Projects per year
Abstract
The unique multicompartmental nanostructure of lipid-based mesophases can be triggered, on-demand, in order to control the release of encapsulated drugs. In this study, these nanostructured matrices have been designed to respond to a specific enzyme, invertase, an enzyme which catalyses the hydrolysis of sucrose. The effect of two sugar esters upon the phase behaviour of two different lipids which form cubic phases, phytantriol and monolinolein, was investigated. Factors affecting the hydrolysis of the sucrose headgroup are discussed in terms of the molecular structure of the sugar surfactant and also its ability to incorporate into the lipid bilayer. By hydrolysing the incorporated sugar esters, a dynamic change in mesophase nanostructure from vesicles to a cubic phase was observed. This phase change resulted in the triggered release of an encapsulated model drug, fluorescein. This investigation demonstrates, for the first time, that changes on a molecular level by subtly controlling the hydrophilic and hydrophobic features of an amphiphilic additive at the interface by enzymatic hydrolysis can result in a global change in the system and so paves the way towards the design and development of lipid-based matrices which are responsive to specific enzymes for the controlled delivery of pharmaceutically active molecules or functional foods.
Original language | English |
---|---|
Pages (from-to) | 4368-4377 |
Number of pages | 10 |
Journal | RSC Advances |
Volume | 7 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2017 |
Projects
- 2 Finished
-
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
Davis, T., Boyd, B., Bunnett, N., Porter, C., Caruso, F., Kent, S., Thordarson, P., Kearnes, M., Gooding, J., Kavallaris, M., Thurecht, K., Whittaker, A. K., Parton, R., Corrie, S. R., Johnston, A., McGhee, J., Greguric, I. D., Stevens, M. M., Lewis, J., Lee, D. S., Alexander, C., Dawson, K., Hawker, C., Haddleton, D., Thierry, B., Prestidge, C. A., Meyer, A., Jones-Jayasinghe, N., Voelcker, N. H., Nann, T. & McLean, K.
Australian Research Council (ARC), Monash University, University of Melbourne, University of New South Wales (UNSW), University of Queensland , University of South Australia, Monash University – Internal Faculty Contribution, University of Wisconsin Madison, Memorial Sloan Kettering Cancer Center, University of California System, University College Dublin, Imperial College London, University of Warwick, SungKyunKwan University, Australian Nuclear Science and Technology Organisation (ANSTO) , University of Nottingham
30/06/14 → 29/06/21
Project: Research
Equipment
-
Australian Synchrotron
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility