Dynamic Fluctuations in Subcellular Localization of the Hippo Pathway Effector Yorkie In Vivo

Samuel A. Manning, Lucas G. Dent, Shu Kondo, Ziqing W. Zhao, Nicolas Plachta, Kieran F. Harvey

Research output: Contribution to journalArticleResearchpeer-review

60 Citations (Scopus)


The Hippo pathway is an evolutionarily conserved signaling network that integrates diverse cues to control organ size and cell fate. The central downstream pathway protein in Drosophila is the transcriptional co-activator Yorkie (YAP and TAZ in humans), which regulates gene expression with the Scalloped/TEA domain family member (TEAD) transcription factors [1–8]. A central regulatory step in the Hippo pathway is phosphorylation of Yorkie by the NDR family kinase Warts, which promotes Yorkie cytoplasmic localization by stimulating association with 14-3-3 proteins [9–12]. Numerous reports have purported a static model of Hippo signaling whereby, upon Hippo activation, Yorkie/YAP/TAZ become cytoplasmic and therefore inactive, and upon Hippo repression, Yorkie/YAP/TAZ transit to the nucleus and are active. However, we have little appreciation for the dynamics of Yorkie/YAP/TAZ subcellular localization because most studies have been performed in fixed cells and tissues. To address this, we used live multiphoton microscopy to investigate the dynamics of an endogenously tagged Yorkie-Venus protein in growing epithelial organs. We found that the majority of Yorkie rapidly traffics between the cytoplasm and nucleus, rather than being statically localized in either compartment. In addition, discrete cell populations within the same organ display different rates of Yorkie nucleo-cytoplasmic shuttling. By assessing Yorkie dynamics in warts mutant tissue, we found that the Hippo pathway regulates Yorkie subcellular distribution by regulating its rate of nuclear import. Furthermore, Yorkie's localization fluctuates dramatically throughout the cell cycle, being predominantly cytoplasmic during interphase and, unexpectedly, chromatin enriched during mitosis. Yorkie's association with mitotic chromatin is Scalloped dependent, suggesting a potential role in mitotic bookmarking. Manning et al. investigate the subcellular dynamics of Yorkie, the key transcription regulator of the Hippo pathway, in vivo. They show that Yorkie is enriched on mitotic chromatin and that this depends on its DNA-binding partner, Scalloped. Yorkie nuclear import varies greatly across growing organs and is negatively regulated by the kinase Warts.

Original languageEnglish
Pages (from-to)1651-1660
Number of pages11
JournalCurrent Biology
Issue number10
Publication statusPublished - 21 May 2018


  • cell cycle
  • Drosophila
  • Hippo
  • in vivo
  • live multiphoton microscopy
  • Scalloped
  • Yorkie

Cite this