TY - JOUR
T1 - Duration of melatonin regulates seasonal plasticity in subtropical Indian weaver bird, Ploceus philippinus
AU - Surbhi, null
AU - Kumari, Yatinesh
AU - Rani, Sangeeta
AU - Tsutsui, Kazuyoshi
AU - Kumar, Vinod
N1 - Funding Information:
We are grateful to Dr. Henryk Urbanski, Oregon Health and Sciences University, USA, for kindly gifting GnRH antibody used in this study. Financial support for the study was given by a generous research grant by the Department of Science and Technology, New Delhi , India, under IRHPA (Intensification of Research in High Priority Area) scheme is acknowledged. The current financial support is given by the Department of Biotechnology, New Delhi , India. Surbhi receives a DST-INSPIRE Fellowship.
Publisher Copyright:
© 2014 Elsevier Inc.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2015/9/1
Y1 - 2015/9/1
N2 - Day length regulates seasonal plasticity connected with reproduction in birds. Rhythmic pineal melatonin secretion is a reliable indicator of the night length, hence day length. Removal of rhythmic melatonin secretion by exposure to constant bright light (LLbright) or by pinealectomy renders several species of songbirds including Indian weaver bird (Ploceus philippinus) arrhythmic. Present study investigated whether rhythmic melatonin is involved in the regulation of key reproductive neuropeptides (GnRH I and GnIH) and reproduction linked neural changes, viz. song control nuclei, in Indian weaver birds. Two experiments were performed using birds in an arrhythmic condition with low (under LLbright) or no (in the absence of pineal gland) endogenous melatonin. In experiment I, three groups of birds (n=5 each) entrained to 12L:12D were exposed to LLbright (25lux) for two weeks. Beginning on day 15 of LLbright, a control group received vehicle for 16h and two treatment groups were given melatonin in drinking water for 8h or 16h. In experiment II, one group of sham-operated and three groups of pinealectomized birds (n=5 each) entrained to 12L:12D were exposed to constant dim light (LLdim, 0.5lux). Beginning on day 15 of LLdim, three groups received similar treatment as in experiment I. Birds were perfused after thirty cycles of the melatonin treatment, and brain sections were immunohistochemically double-labeled for GnRH I and GnIH or Nissl stained. Activity was recorded throughout the experiments, while body mass and testes were measured at the beginning and end of the experiment. Birds were synchronized with melatonin cycles and measured the duration of melatonin as "night". Pinealectomized birds that received 16h of melatonin had significantly higher GnIH-ir cells than those received 8h melatonin; there was no difference in the GnRH I immunoreactivity between two treatment groups however. Intact birds that received long duration melatonin cycles exhibited small song control nuclei, specifically the high vocal center (HVC) and the robust nucleus of the arcopallium (RA), while birds that received short duration melatonin or no melatonin exhibited large HVC and RA. Thus, melatonin possibly regulates seasonal reproduction via GnIH secretion, and also controls seasonal neuroplasticity in the song control system in songbirds.
AB - Day length regulates seasonal plasticity connected with reproduction in birds. Rhythmic pineal melatonin secretion is a reliable indicator of the night length, hence day length. Removal of rhythmic melatonin secretion by exposure to constant bright light (LLbright) or by pinealectomy renders several species of songbirds including Indian weaver bird (Ploceus philippinus) arrhythmic. Present study investigated whether rhythmic melatonin is involved in the regulation of key reproductive neuropeptides (GnRH I and GnIH) and reproduction linked neural changes, viz. song control nuclei, in Indian weaver birds. Two experiments were performed using birds in an arrhythmic condition with low (under LLbright) or no (in the absence of pineal gland) endogenous melatonin. In experiment I, three groups of birds (n=5 each) entrained to 12L:12D were exposed to LLbright (25lux) for two weeks. Beginning on day 15 of LLbright, a control group received vehicle for 16h and two treatment groups were given melatonin in drinking water for 8h or 16h. In experiment II, one group of sham-operated and three groups of pinealectomized birds (n=5 each) entrained to 12L:12D were exposed to constant dim light (LLdim, 0.5lux). Beginning on day 15 of LLdim, three groups received similar treatment as in experiment I. Birds were perfused after thirty cycles of the melatonin treatment, and brain sections were immunohistochemically double-labeled for GnRH I and GnIH or Nissl stained. Activity was recorded throughout the experiments, while body mass and testes were measured at the beginning and end of the experiment. Birds were synchronized with melatonin cycles and measured the duration of melatonin as "night". Pinealectomized birds that received 16h of melatonin had significantly higher GnIH-ir cells than those received 8h melatonin; there was no difference in the GnRH I immunoreactivity between two treatment groups however. Intact birds that received long duration melatonin cycles exhibited small song control nuclei, specifically the high vocal center (HVC) and the robust nucleus of the arcopallium (RA), while birds that received short duration melatonin or no melatonin exhibited large HVC and RA. Thus, melatonin possibly regulates seasonal reproduction via GnIH secretion, and also controls seasonal neuroplasticity in the song control system in songbirds.
KW - GnIH
KW - GnRH I
KW - HVC
KW - Indian weaver bird
KW - Melatonin
KW - RA
UR - http://www.scopus.com/inward/record.url?scp=84941180914&partnerID=8YFLogxK
U2 - 10.1016/j.ygcen.2014.06.004
DO - 10.1016/j.ygcen.2014.06.004
M3 - Conference article
C2 - 24932714
AN - SCOPUS:84941180914
SN - 0016-6480
VL - 220
SP - 46
EP - 54
JO - General and Comparative Endocrinology
JF - General and Comparative Endocrinology
ER -