Abstract
Plasmonic noble metal nanoparticles exhibit intense interactions with light but are inherently chemically unreactive. Alloying plasmonic gold with catalytic palladium forms a hybrid catalyst incorporating each metal's benefits. In this work we demonstrate a robust method for preparing alloyed nanoparticles without the need for colloidal synthesis or time-consuming lithography. This method results in uniform, densely packed monolayers of alloyed AuPd nanoparticles suitable for inclusion in electromagnetic perfect absorbers, which further strengthen existing light-matter interactions. While these materials demonstrate a strong photocathodic response not possible using monometallic Au nanoparticles on a n-type spacer and exhibit higher photon-to-energy efficiencies than Pd analogues, they are also capable of a photoanodic response characterized by electron injection across the Schottky junction with TiO2. The alloying of plasmonic Au and catalytic Pd and subsequent incorporation in a highly absorbing material represents a promising step toward efficient photoelectrocatalysts for hydrogen production that operate under real-world conditions.
Original language | English |
---|---|
Pages (from-to) | 2702-2712 |
Number of pages | 11 |
Journal | ACS Applied Nano Materials |
Volume | 4 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2021 |
Keywords
- AuPd alloy
- hot carrier generation
- nanofabrication
- near-perfect absorber
- photocatalysis
- plasmonics
Equipment
-
Australian Synchrotron
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility
-
Centre for Electron Microscopy (MCEM)
Flame Sorrell (Manager) & Peter Miller (Manager)
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility
-
Melbourne Centre for Nanofabrication
Sean Langelier (Manager)
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility