Drop penetration time in heterogeneous powder beds

Thanh Nguyen, Wei Shen, Karen Hapgood

Research output: Contribution to journalArticleResearchpeer-review

56 Citations (Scopus)


Wet granulation is a technique in which enlarged particles or a??granulesa?? are produced from the coalescence of fine particles, with the intention of improving the powder properties. High shear granulators are often used to carry out the granulation process where the powder mass is agitated in a vessel by mechanical means while liquid is sprayed from above onto the powder bed surface. When the binder droplets impact the powder surface, the drop penetration time of the droplet into the powder is important for uniform binder dispersion and the prediction of the formation of granule nuclei from the nucleation map, which depends on the dimensionless spray flux. Previous studies on the drop penetration time were carried out on predominantly hydrophilic powder beds. Although this gives a good prediction of the nucleation behaviour in granulation, it does not reflect the condition where hydrophobic drugs are used in the formulation without surfactants. This paper aims to look at the effects of powder bed hydrophobicity on the drop penetration time. Single drop nucleation experiments using a syringe and a small powder bed were carried out on varying ratios of salicylic acid and lactose powders to study the kinetic of drop penetration. As expected, the drop penetration time increased as the proportion of hydrophobic component increased in the powder mixture. However, long drop penetration times were observed for low degrees of drug loading, showing that hydrophobicity strongly influences the drop penetration time. The wettability of the powder mixture also has a pronounced affect on the granule properties in which the hydrophobicity of the powder mixture is proportional to the granule strength and inversely proportional to the granule size. These findings have important implications in terms of the design of the granulation process where conditions of minimum spray flux or efficient mechanical forces are recommended to produce a more uniform granulation batch.
Original languageEnglish
Pages (from-to)5210 - 5221
Number of pages12
JournalChemical Engineering Science
Issue number24
Publication statusPublished - 2009

Cite this