Dominance reversals and the maintenance of genetic variation for fitness

Timothy Connallon, Stephen Chenoweth

Research output: Contribution to journalArticleResearchpeer-review

41 Citations (Scopus)

Abstract

Antagonistic selection between different fitness components (e.g., survival versus fertility) or different types of individuals in a population (e.g., females versus males) can potentially maintain genetic diversity and thereby account for the high levels of fitness variation observed in natural populations. However, the degree to which antagonistic selection can maintain genetic variation critically depends on the dominance relations between antagonistically selected alleles in diploid individuals. Conditions for stable polymorphism of antagonistically selected alleles are narrow, particularly when selection is weak, unless the alleles exhibit “dominance reversals”—in which each allele is partially or completely dominant in selective contexts in which it is favored and recessive in contexts in which it is harmful. Although theory predicts that dominance reversals should emerge under biologically plausible conditions, evidence for dominance reversals is sparse. In this primer, we review theoretical arguments and data supporting a role for dominance reversals in the maintenance of genetic variation. We then highlight an illuminating new study by Grieshop and Arnqvist, which reports a genome-wide signal of dominance reversals between male and female fitness in seed beetles.
Original languageEnglish
Article numbere3000118
Number of pages11
JournalPLoS Biology
Volume17
Issue number1
DOIs
Publication statusPublished - 2019

Cite this