TY - JOUR
T1 - Diving below the Spin-down Limit
T2 - Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910
AU - The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration
AU - Ackley, Kendall
AU - Ashton, Greg
AU - Easter, Paul J.
AU - Farrow, Nicholas
AU - Galaudage, Shanika
AU - Goncharov, Boris
AU - Hernandez Vivanco, Francisco Javier
AU - Huebner, Moritz
AU - Lasky, Paul
AU - Levin, Yuri
AU - Payne, Ethan
AU - Romero-Shaw, Isobel M.
AU - Sarin, Nikhil
AU - Smith, Rory
AU - Thrane, Eric
AU - Vajpeyi, Avi
AU - Zhu, Xingjiang
N1 - Publisher Copyright:
© 2021. The American Astronomical Society. All rights reserved.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/6/1
Y1 - 2021/6/1
N2 - We present a search for quasi-monochromatic gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using Neutron star Interior Composition Explorer (NICER) data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and exhibits fRequent and strong glitches. Analyses of its long-term and interglitch braking indices provide intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of the LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency from PSR J0537-6910. We find no signal, however, and report upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of 2 and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is constrained to less than about 3 ×10-5, which is the third best constraint for any young pulsar.
AB - We present a search for quasi-monochromatic gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using Neutron star Interior Composition Explorer (NICER) data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and exhibits fRequent and strong glitches. Analyses of its long-term and interglitch braking indices provide intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of the LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency from PSR J0537-6910. We find no signal, however, and report upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of 2 and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is constrained to less than about 3 ×10-5, which is the third best constraint for any young pulsar.
KW - Gravitational waves
UR - http://www.scopus.com/inward/record.url?scp=85108553505&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/abffcd
DO - 10.3847/2041-8213/abffcd
M3 - Article
AN - SCOPUS:85108553505
SN - 2041-8205
VL - 913
JO - The Astrophysical Journal Letters
JF - The Astrophysical Journal Letters
IS - 2
M1 - L27
ER -