TY - JOUR
T1 - Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community
AU - Li, Zhou
AU - Wang, Yingfeng
AU - Yao, Qiuming
AU - Justice, Nicholas B.
AU - Ahn, Tae Hyuk
AU - Xu, Dong
AU - Hettich, Robert L.
AU - Banfield, Jillian F.
AU - Pan, Chongle
N1 - Funding Information:
We thank Dr. Annika Mosier for providing a GS2 sample; Dr. Ritin Sharma for providing an E. coli sample; and Dr. Jennifer Doudna and Dr. Rodolphe Barrangou for discussion about the CRISPR-Cas system. This work was funded by the US Department of Energy Office of Science, Biological and Environmental Research, Carbon Cycling program for Z.L., N.B.J., R.L.H., J.F.B. and C.P., Knowledgebase program for Y.W. and T.-H.A., and National Institutes of Health grant (R01-GM100701) for Q.Y. and D.X. This research used resources of the Oak Ridge Leadership Computing Facility. Oak Ridge National Laboratory is supported by the Office of Science of the US Department of Energy.
PY - 2014/7/25
Y1 - 2014/7/25
N2 - Detailed characterization of post-translational modifications (PTMs) of proteins in microbial communities remains a significant challenge. Here we directly identify and quantify a broad range of PTMs (hydroxylation, methylation, citrullination, acetylation, phosphorylation, methylthiolation, S-nitrosylation and nitration) in a natural microbial community from an acid mine drainage site. Approximately 29% of the identified proteins of the dominant Leptospirillum group II bacteria are modified, and 43% of modified proteins carry multiple PTM types. Most PTM events, except S-nitrosylations, have low fractional occupancy. Notably, PTM events are detected on Cas proteins involved in antiviral defense, an aspect of Cas biochemistry not considered previously. Further, Cas PTM profiles from Leptospirillum group II differ in early versus mature biofilms. PTM patterns are divergent on orthologues of two closely related, but ecologically differentiated, Leptospirillum group II bacteria. Our results highlight the prevalence and dynamics of PTMs of proteins, with potential significance for ecological adaptation and microbial evolution.
AB - Detailed characterization of post-translational modifications (PTMs) of proteins in microbial communities remains a significant challenge. Here we directly identify and quantify a broad range of PTMs (hydroxylation, methylation, citrullination, acetylation, phosphorylation, methylthiolation, S-nitrosylation and nitration) in a natural microbial community from an acid mine drainage site. Approximately 29% of the identified proteins of the dominant Leptospirillum group II bacteria are modified, and 43% of modified proteins carry multiple PTM types. Most PTM events, except S-nitrosylations, have low fractional occupancy. Notably, PTM events are detected on Cas proteins involved in antiviral defense, an aspect of Cas biochemistry not considered previously. Further, Cas PTM profiles from Leptospirillum group II differ in early versus mature biofilms. PTM patterns are divergent on orthologues of two closely related, but ecologically differentiated, Leptospirillum group II bacteria. Our results highlight the prevalence and dynamics of PTMs of proteins, with potential significance for ecological adaptation and microbial evolution.
UR - http://www.scopus.com/inward/record.url?scp=84904965551&partnerID=8YFLogxK
U2 - 10.1038/ncomms5405
DO - 10.1038/ncomms5405
M3 - Article
C2 - 25059763
AN - SCOPUS:84904965551
SN - 2041-1723
VL - 5
JO - Nature Communications
JF - Nature Communications
M1 - 4405
ER -