Projects per year
Abstract
This study utilizes observations and a series of idealized experiments to explore whether eastern Pacific (EP)- and central Pacific (CP)-type El Niño–Southern Oscillation (ENSO) events produce surface wind stress responses with distinct spatial structures. We find that the meridionally broader sea surface temperatures (SSTs) during CP events lead to zonal wind stresses that are also meridionally broader than those found during EP-type events, leading to differences in the near-equatorial wind stress curl. These wind spatial structure differences create differences in the associated pre- and post-ENSO event WWV response. For instance, the meridionally narrow winds found during EP events have (i) weaker wind stresses along 58N and 58S, leading to weaker Ekman-induced pre-event WWV changes; and (ii) stronger near-equatorial wind stress curls that lead to a much larger post-ENSO event WWV changes than during CP events. The latter suggests that, in the framework of the recharge oscillator model, the EP events have stronger coupling between sea surface temperatures (SST) and thermocline (WWV), supporting more clearly the phase transition of ENSO events, and therefore, the oscillating nature of ENSO than CP events. The results suggest that the spatial structure of the SST pattern and the related differences in the wind stress curl, are required along with equatorial wind stress to accurately model the WWV changes during EP- and CP-type ENSO events.
Original language | English |
---|---|
Pages (from-to) | 1423-1440 |
Number of pages | 18 |
Journal | Journal of Climate |
Volume | 35 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 Mar 2022 |
Keywords
- El Nino
- ENSO
- Warm water volume
- Wind stress
- Wind stress curl
Projects
- 3 Finished
-
Improving the credibility of regional sea level rise projections
McGregor, S., Dommenget, D., Sen Gupta, A. & Power, S.
30/06/20 → 30/06/24
Project: Research
-
Understanding predictability of the El Nino-Southern Oscillation
Australian Research Council (ARC), Monash University
30/06/17 → 31/12/23
Project: Research
-
ARC Centre of Excellence for Climate Extremes
Pitman, A. J., Jakob, C., Alexander, L., Reeder, M., Roderick, M., England, M. H., Abramowitz, G., Abram, N., Arblaster, J., Bindoff, N. L., Dommenget, D., Evans, J. P., Hogg, A. M., Holbrook, N. J., Karoly, D. J., Lane, T. P., Sherwood, S. C., Strutton, P., Ebert, E., Hendon, H., Hirst, A. C., Marsland, S., Matear, R., Protat, A., Wang, Y., Wheeler, M. C., Best, M. J., Brody, S., Grabowski, W., Griffies, S., Gruber, N., Gupta, H., Hallberg, R., Hohenegger, C., Knutti, R., Meehl, G. A., Milton, S., de Noblet-Ducoudre, N., Or, D., Petch, J., Peters-Lidard, C., Overpeck, J., Russell, J., Santanello, J., Seneviratne, S. I., Stephens, G., Stevens, B., Stott, P. A. & Saunders, K.
Monash University – Internal University Contribution, Monash University – Internal School Contribution, Monash University – Internal Faculty Contribution, University of New South Wales (UNSW), Australian National University (ANU), University of Melbourne, University of Tasmania, Bureau of Meteorology (BOM) (Australia), Department of Planning and Environment (DPE) (New South Wales)
1/01/17 → 31/12/24
Project: Research