TY - JOUR
T1 - Distinct molecular pathogeneses of early-onset breast cancers in BRCA1 and BRCA2 mutation carriers
T2 - A population-based study
AU - Armes, Jane E.
AU - Trute, Lynne
AU - White, David
AU - Southey, Melissa C.
AU - Hammel, Fleur
AU - Tesoriero, Andrea
AU - Hutchins, Anne Marie
AU - Dite, Gillian S.
AU - McCredie, Margaret R.E.
AU - Giles, Graham G.
AU - Hopper, John L.
AU - Venter, Deon J.
PY - 1999/4/15
Y1 - 1999/4/15
N2 - Breast cancers arising in women with and without a germline mutation in the BRCA1 or BRCA2 gene display different histological features, which suggests unique mechanisms of molecular pathogenesis: We used a molecular pathological analysis to define the genetic abnormalities relevant to these specific pathogeneses. Tumor material was studied from 40 women with breast cancer diagnosed before 40 years of age, sampled from a population-based study and stratified by BRCA1 and BRCA2 germline mutation status. Cases were not selected for family history or ethnic origin, and none were known to be genetically related. Thus, germline mutation itself is likely to impact on the molecular pathogenesis of these tumors, with no substantial influence due to modifying genetic or environmental factors. Breast cancers occurring in BRCA1 mutation carriers had significantly higher levels of p53 expression, including the preinvasive (carcinoma in situ) stage of disease, compared with cancers occurring in BRCA2 mutation carriers or women with no detectable germline mutation. These cancers also had a higher proliferation rate as measured by Ki-67 antibody. Expression of the prognostic factors c-erbB-2, cyclin D1, and estrogen receptor was significantly less common in BRCA1 mutation carriers. Lower levels of cyclin D1 were also found in cancers from BRCA2 mutation carriers compared with non-mutation carriers. Direct p53 mutation analysis revealed mutations in 18% of all of the early-onset breast cancers within the study and included rare insertion and deletional mutations in cancers from BRCA1 mutation carriers. Our data indicate that a BRCA1 breast cancer phenotype may be recognized by an exceptionally high proliferation rate and early and frequent p53 overexpression but infrequent selection for overexpression of several other prognostic factor proteins known to be involved in breast oncogenesis. In contrast, breast cancers arising in BRCA2 mutation carriers have a more heterogeneous phenotypic profile.
AB - Breast cancers arising in women with and without a germline mutation in the BRCA1 or BRCA2 gene display different histological features, which suggests unique mechanisms of molecular pathogenesis: We used a molecular pathological analysis to define the genetic abnormalities relevant to these specific pathogeneses. Tumor material was studied from 40 women with breast cancer diagnosed before 40 years of age, sampled from a population-based study and stratified by BRCA1 and BRCA2 germline mutation status. Cases were not selected for family history or ethnic origin, and none were known to be genetically related. Thus, germline mutation itself is likely to impact on the molecular pathogenesis of these tumors, with no substantial influence due to modifying genetic or environmental factors. Breast cancers occurring in BRCA1 mutation carriers had significantly higher levels of p53 expression, including the preinvasive (carcinoma in situ) stage of disease, compared with cancers occurring in BRCA2 mutation carriers or women with no detectable germline mutation. These cancers also had a higher proliferation rate as measured by Ki-67 antibody. Expression of the prognostic factors c-erbB-2, cyclin D1, and estrogen receptor was significantly less common in BRCA1 mutation carriers. Lower levels of cyclin D1 were also found in cancers from BRCA2 mutation carriers compared with non-mutation carriers. Direct p53 mutation analysis revealed mutations in 18% of all of the early-onset breast cancers within the study and included rare insertion and deletional mutations in cancers from BRCA1 mutation carriers. Our data indicate that a BRCA1 breast cancer phenotype may be recognized by an exceptionally high proliferation rate and early and frequent p53 overexpression but infrequent selection for overexpression of several other prognostic factor proteins known to be involved in breast oncogenesis. In contrast, breast cancers arising in BRCA2 mutation carriers have a more heterogeneous phenotypic profile.
UR - http://www.scopus.com/inward/record.url?scp=0033561620&partnerID=8YFLogxK
M3 - Article
C2 - 10213514
AN - SCOPUS:0033561620
VL - 59
SP - 2011
EP - 2017
JO - Cancer Research
JF - Cancer Research
SN - 0008-5472
IS - 8
ER -