Distilling knowledge from a deep pose regressor network

Muhamad Risqi U. Saputra, Pedro Gusmao, Yasin Almalioglu, Andrew Markham, Niki Trigoni

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

81 Citations (Scopus)

Abstract

This paper presents a novel method to distill knowledge from a deep pose regressor network for efficient Visual Odometry (VO). Standard distillation relies on ''dark knowledge'' for successful knowledge transfer. As this knowledge is not available in pose regression and the teacher prediction is not always accurate, we propose to emphasize the knowledge transfer only when we trust the teacher. We achieve this by using teacher loss as a confidence score which places variable relative importance on the teacher prediction. We inject this confidence score to the main training task via Attentive Imitation Loss (AIL) and when learning the intermediate representation of the teacher through Attentive Hint Training (AHT) approach. To the best of our knowledge, this is the first work which successfully distill the knowledge from a deep pose regression network. Our evaluation on the KITTI and Malaga dataset shows that we can keep the student prediction close to the teacher with up to 92.95% parameter reduction and 2.12x faster in computation time.

Original languageEnglish
Title of host publicationProceedings - 2019 International Conference on Computer Vision, ICCV 2019
EditorsIn So Kweon, Nikos Paragios, Ming-Hsuan Yang, Svetlana Lazebnik
Place of PublicationPiscataway NJ USA
PublisherIEEE, Institute of Electrical and Electronics Engineers
Pages263-272
Number of pages10
ISBN (Electronic)9781728148038
ISBN (Print)9781728148045
DOIs
Publication statusPublished - 2019
Externally publishedYes
EventIEEE International Conference on Computer Vision 2019 - Seoul, Korea, South
Duration: 27 Oct 20192 Nov 2019
Conference number: 17th
http://iccv2019.thecvf.com/
https://ieeexplore.ieee.org/xpl/conhome/8972782/proceeding (Proceedings)

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
PublisherThe Institute of Electrical and Electronics Engineers, Inc. All rights
Volume2019-October
ISSN (Print)1550-5499
ISSN (Electronic)2380-7504

Conference

ConferenceIEEE International Conference on Computer Vision 2019
Abbreviated titleICCV 2019
Country/TerritoryKorea, South
CitySeoul
Period27/10/192/11/19
Internet address

Cite this