Abstract
We investigate the use of discriminative feature extractors in tandem configuration with generative EEG classification system. Existing studies on dynamic EEG classification typically use hidden Markov models (HMMs) which lack discriminative capability. In this paper, a linear and a non-linear classifier are discriminatively trained to produce complementary input features to the conventional HMM system. Two sets of tandem features are derived from linear discriminant analysis (LDA) projection output and multilayer perceptron (MLP) class-posterior probability, before appended to the standard autoregressive (AR) features. Evaluation on a two-class motor-imagery classification task shows that both the proposed tandem features yield consistent gains over the AR baseline, resulting in significant relative improvement of 6.2% and 11.2% for the LDA and MLP features respectively. We also explore portability of these features across different subjects.
Original language | English |
---|---|
Title of host publication | 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 |
Pages | 3957-3960 |
Number of pages | 4 |
DOIs | |
Publication status | Published - 2013 |
Externally published | Yes |
Event | International Conference of the IEEE Engineering in Medicine and Biology Society 2013 - Osaka International Convention Center, Osaka, Japan Duration: 3 Jul 2013 → 7 Jul 2013 Conference number: 35th https://ieeexplore.ieee.org/xpl/conhome/6596169/proceeding (Proceedings) |
Publication series
Name | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
---|---|
ISSN (Print) | 1557-170X |
Conference
Conference | International Conference of the IEEE Engineering in Medicine and Biology Society 2013 |
---|---|
Abbreviated title | EMBC 2013 |
Country/Territory | Japan |
City | Osaka |
Period | 3/07/13 → 7/07/13 |
Internet address |
Keywords
- Artificial neural network-hidden Markov models
- brain-computer-interface (BCI)
- EEG classification