Abstract
Surfaces that control fluids are important in self-cleaning, liquid-transport and cell-directing. They are significantly observed on biological surfaces that control wettability and adhesion by means of micro-/nanostructures, and have aroused interest in foundational and biomimetic research. Here, we report a novel taper-ratchet array on ryegrass leaf. It integrates a gradient of retention at solid-liquid interfaces in contrasting directions to reversibly generate the release or the pinning of solid-liquid contact lines, and accordingly, achieves effective directional water shedding-off properties. By mimicking taper-ratchets from ryegrass leaf, the polymer surfaces are fabricated successfully. They display a robust property of directional water shedding-off. When external vibrations are executed on polymer surfaces, the drops achieve a unidirectional self-shedding along the oriented direction of tips of taper-ratchets, because asymmetric retention forces are formed in the contrasting oriented directions. This investigation will be helpful to design a novel fluid-controlling surface that can be extended to applications such as self-cleaning, liquid-transport and cell-directed projects.
Original language | English |
---|---|
Pages (from-to) | 1770-1775 |
Number of pages | 6 |
Journal | Soft Matter |
Volume | 8 |
Issue number | 6 |
DOIs | |
Publication status | Published - 14 Feb 2012 |
Externally published | Yes |