TY - JOUR
T1 - Diffusion NMR study of generation-five PAMAM dendrimer materials
AU - Van Dongen, Mallory A.
AU - Orr, Bradford G.
AU - Banaszak Holl, Mark M.
PY - 2014/6/26
Y1 - 2014/6/26
N2 - Commercial generation-five poly(amidoamine) dendrimer material (G5c) was fractionated into its major structural components. Monomeric G5 (G5m; 21-30 kDa) was isolated to compare its functional properties to the G5c material. Diffusion-ordered nuclear magnetic resonance spectroscopy was employed to measure the self-diffusion coefficients and corresponding hydrodynamic radii of G5m and other G5c components as a function of dendrimer size (i.e., molecular weight) and tertiary structure (i.e., generational or oligomeric nature). It was found that the hydrodynamic radius (RH) scales with approximate numbers of atoms in the trailing generations, G5m, and oligomeric material at a rate of RH ∝ N0.35, in good agreement with previous reports of RH scaling for PAMAM dendrimer with generation. G5c materials can be thought of as a heterogeneous mixture of dendrimers ranging in size from trailing generation two to tetramers of G5, approximately the same in size as a G7 dendrimer, with G5m comprising ∼65% of the material. The radius of hydration for G5m was measured to be 3.1 ± 0.1 nm at pH 7.4. The 10% swelling in response to a drop in pH observed for the G5c material was not observed for isolated G5m; however, the isolated G5-G5 dimers had an increase of 44% in RH, indicating that the G5c pH response results from the increase in RH of the oligomeric fraction upon protonation. Finally, the data allow for an experimental test of the "slip" and "stick" boundary models of the Stokes-Einstein equation for PAMAM dendrimer in water.
AB - Commercial generation-five poly(amidoamine) dendrimer material (G5c) was fractionated into its major structural components. Monomeric G5 (G5m; 21-30 kDa) was isolated to compare its functional properties to the G5c material. Diffusion-ordered nuclear magnetic resonance spectroscopy was employed to measure the self-diffusion coefficients and corresponding hydrodynamic radii of G5m and other G5c components as a function of dendrimer size (i.e., molecular weight) and tertiary structure (i.e., generational or oligomeric nature). It was found that the hydrodynamic radius (RH) scales with approximate numbers of atoms in the trailing generations, G5m, and oligomeric material at a rate of RH ∝ N0.35, in good agreement with previous reports of RH scaling for PAMAM dendrimer with generation. G5c materials can be thought of as a heterogeneous mixture of dendrimers ranging in size from trailing generation two to tetramers of G5, approximately the same in size as a G7 dendrimer, with G5m comprising ∼65% of the material. The radius of hydration for G5m was measured to be 3.1 ± 0.1 nm at pH 7.4. The 10% swelling in response to a drop in pH observed for the G5c material was not observed for isolated G5m; however, the isolated G5-G5 dimers had an increase of 44% in RH, indicating that the G5c pH response results from the increase in RH of the oligomeric fraction upon protonation. Finally, the data allow for an experimental test of the "slip" and "stick" boundary models of the Stokes-Einstein equation for PAMAM dendrimer in water.
UR - http://www.scopus.com/inward/record.url?scp=84903445313&partnerID=8YFLogxK
U2 - 10.1021/jp504059p
DO - 10.1021/jp504059p
M3 - Article
C2 - 24901764
AN - SCOPUS:84903445313
SN - 1520-6106
VL - 118
SP - 7195
EP - 7202
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 25
ER -