Differential SKIP expression in PTEN-deficient glioblastoma regulates cellular proliferation and migration

Elizabeth M Davies, Anne M Kong, April Y L Tan, Rajendra Gurung, Absorn Sriratana, Patricia Evelina Bukczynska, Lisa M Ooms, Catriona Ann McLean, Tony Tiganis, Christina Anne Mitchell

Research output: Contribution to journalArticleResearchpeer-review

14 Citations (Scopus)

Abstract

Glioblastoma is the most common and lethal primary malignant brain tumor in adults. The tumor suppressor gene PTEN is deleted, mutated or hypermethylated in more than 60 of glioblastoma cases resulting in hyperactivation of the phosphoinositide 3-kinase pathway, which leads to sustained PI(3,4,5)P3 signaling, and thereby hyperactivation of Akt and other effectors. PI(3,4,5)P3 is also hydrolyzed to PI(3,4)P2 by inositol polyphosphate 5-phosphatases such as SKIP, but the role this pathway has in glioblastoma is unknown. Microarray expression profiling of SKIP in human glioblastoma has revealed both increased and decreased SKIP gene expression. Here we have screened PTEN-deficient glioblastoma for SKIP protein expression by immunohistochemistry and report that SKIP expression is increased in some cases or decreased relative to normal brain. Using the U-87MG PTEN-deficient cell line we show that SKIP knockdown did not further enhance cell proliferation or survival. However, SKIP overexpression in U-87MG cells suppressed anchorage-independent cell growth and growth factor-induced PI(3,4,5)P3/Akt signaling. Although, SKIP knockdown did not affect cell proliferation or survival, cell migration was significantly retarded, associated with significantly increased PI(4,5)P2 signals, and decreased phosphorylation of the actin-regulatory protein cofilin, a PI(4,5)P2-binding protein. Notably, overexpression of SKIP also inhibited migration of U-87MG cells to a similar degree as observed with PTEN reconstitution, however, via distinct mechanisms. PTEN reconstitution promoted sustained lamellipodia generation and focal adhesion formation. In contrast, SKIP overexpression reduced sustained lamellipodia formation, talin incorporation into focal adhesions and recruitment of PI(4,5)P2-binding proteins to the plasma membrane. Notably, analysis of two independent ONCOMINE microarray data sets revealed a significant correlation between increased SKIP mRNA expression in glioblastoma and i
Original languageEnglish
Pages (from-to)3711-3727
Number of pages17
JournalOncogene
Volume34
Issue number28
DOIs
Publication statusPublished - 2015

Cite this