Differences in white matter structure between seizure prone (FAST) and seizure resistant (SLOW) rat strains

Pragati Sharma, David K. Wright, Leigh A. Johnston, Kim L. Powell, Mary E. Wlodek, Sandy R. Shultz, Terence J. O'Brien, Krista L. Gilby

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Alterations in white matter integrity have been well documented in chronic epilepsy and during epileptogenesis. However, the relationship between white matter integrity and a predisposition towards epileptogenesis has been understudied. The FAST rat strain exhibit heightened susceptibility towards kindling epileptogenesis whereas SLOW rats are highly resistant. FAST rats also display behavioral phenotypes reminiscent of those observed in neurodevelopmental disorders that commonly comorbid with epilepsy. In this study, we aim to identify differences in white matter integrity that may contribute to a predisposition towards epileptogenesis and its associated comorbidities in 6 month old FAST (n = 10) and SLOW (n = 10) male rats. Open field and water consumption tests were conducted to confirm the behavioral phenotype difference between FAST and SLOW rats followed by ex-vivo diffusion-weighted magnetic resonance imaging to identify differences in white matter integrity. Diffusion tensor imaging scalar values namely fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity were compared in the anterior commissure, corpus callosum, external capsule, internal capsule, fimbria and optic tract. Electron microscopy was used to evaluate microstructural alterations in myelinated axons. Behavioral phenotyping confirmed higher activity levels (distance moved on days 2–4, p < 0.001; number of rearings on days 2 and 4, p < 0.05 at both days) and polydipsia (p < 0.001) in FAST rats. Comparative analysis of diffusion tensor imaging scalars found a significant decrease in fractional anisotropy in the corpus callosum (p < 0.05) of FAST versus SLOW rats. Using electron microscopy, alterations in myelinated axons including increased axon diameter (p < 0.001) and reduced g-ratio (p < 0.001) in the midline of the corpus callosum in 6 month old FAST (n = 3) versus SLOW (n = 4) male rats. These findings suggest that differences in white matter integrity between FAST and SLOW rats could be a contributing factor to the differential seizure susceptibility and behavioral phenotypes observed in these strains.

Original languageEnglish
Pages (from-to)33-40
Number of pages8
JournalNeurobiology of Disease
Volume104
DOIs
Publication statusPublished - 1 Aug 2017
Externally publishedYes

Keywords

  • Diffusion tensor imaging
  • Epilepsy
  • Neurodevelopmental disorders
  • Seizure susceptibility
  • White matter

Cite this

@article{e684527e89b9445288d38448cdffc755,
title = "Differences in white matter structure between seizure prone (FAST) and seizure resistant (SLOW) rat strains",
abstract = "Alterations in white matter integrity have been well documented in chronic epilepsy and during epileptogenesis. However, the relationship between white matter integrity and a predisposition towards epileptogenesis has been understudied. The FAST rat strain exhibit heightened susceptibility towards kindling epileptogenesis whereas SLOW rats are highly resistant. FAST rats also display behavioral phenotypes reminiscent of those observed in neurodevelopmental disorders that commonly comorbid with epilepsy. In this study, we aim to identify differences in white matter integrity that may contribute to a predisposition towards epileptogenesis and its associated comorbidities in 6 month old FAST (n = 10) and SLOW (n = 10) male rats. Open field and water consumption tests were conducted to confirm the behavioral phenotype difference between FAST and SLOW rats followed by ex-vivo diffusion-weighted magnetic resonance imaging to identify differences in white matter integrity. Diffusion tensor imaging scalar values namely fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity were compared in the anterior commissure, corpus callosum, external capsule, internal capsule, fimbria and optic tract. Electron microscopy was used to evaluate microstructural alterations in myelinated axons. Behavioral phenotyping confirmed higher activity levels (distance moved on days 2–4, p < 0.001; number of rearings on days 2 and 4, p < 0.05 at both days) and polydipsia (p < 0.001) in FAST rats. Comparative analysis of diffusion tensor imaging scalars found a significant decrease in fractional anisotropy in the corpus callosum (p < 0.05) of FAST versus SLOW rats. Using electron microscopy, alterations in myelinated axons including increased axon diameter (p < 0.001) and reduced g-ratio (p < 0.001) in the midline of the corpus callosum in 6 month old FAST (n = 3) versus SLOW (n = 4) male rats. These findings suggest that differences in white matter integrity between FAST and SLOW rats could be a contributing factor to the differential seizure susceptibility and behavioral phenotypes observed in these strains.",
keywords = "Diffusion tensor imaging, Epilepsy, Neurodevelopmental disorders, Seizure susceptibility, White matter",
author = "Pragati Sharma and Wright, {David K.} and Johnston, {Leigh A.} and Powell, {Kim L.} and Wlodek, {Mary E.} and Shultz, {Sandy R.} and O'Brien, {Terence J.} and Gilby, {Krista L.}",
year = "2017",
month = "8",
day = "1",
doi = "10.1016/j.nbd.2017.04.022",
language = "English",
volume = "104",
pages = "33--40",
journal = "Neurobiology of Disease",
issn = "0969-9961",
publisher = "Elsevier",

}

Differences in white matter structure between seizure prone (FAST) and seizure resistant (SLOW) rat strains. / Sharma, Pragati; Wright, David K.; Johnston, Leigh A.; Powell, Kim L.; Wlodek, Mary E.; Shultz, Sandy R.; O'Brien, Terence J.; Gilby, Krista L.

In: Neurobiology of Disease, Vol. 104, 01.08.2017, p. 33-40.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Differences in white matter structure between seizure prone (FAST) and seizure resistant (SLOW) rat strains

AU - Sharma, Pragati

AU - Wright, David K.

AU - Johnston, Leigh A.

AU - Powell, Kim L.

AU - Wlodek, Mary E.

AU - Shultz, Sandy R.

AU - O'Brien, Terence J.

AU - Gilby, Krista L.

PY - 2017/8/1

Y1 - 2017/8/1

N2 - Alterations in white matter integrity have been well documented in chronic epilepsy and during epileptogenesis. However, the relationship between white matter integrity and a predisposition towards epileptogenesis has been understudied. The FAST rat strain exhibit heightened susceptibility towards kindling epileptogenesis whereas SLOW rats are highly resistant. FAST rats also display behavioral phenotypes reminiscent of those observed in neurodevelopmental disorders that commonly comorbid with epilepsy. In this study, we aim to identify differences in white matter integrity that may contribute to a predisposition towards epileptogenesis and its associated comorbidities in 6 month old FAST (n = 10) and SLOW (n = 10) male rats. Open field and water consumption tests were conducted to confirm the behavioral phenotype difference between FAST and SLOW rats followed by ex-vivo diffusion-weighted magnetic resonance imaging to identify differences in white matter integrity. Diffusion tensor imaging scalar values namely fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity were compared in the anterior commissure, corpus callosum, external capsule, internal capsule, fimbria and optic tract. Electron microscopy was used to evaluate microstructural alterations in myelinated axons. Behavioral phenotyping confirmed higher activity levels (distance moved on days 2–4, p < 0.001; number of rearings on days 2 and 4, p < 0.05 at both days) and polydipsia (p < 0.001) in FAST rats. Comparative analysis of diffusion tensor imaging scalars found a significant decrease in fractional anisotropy in the corpus callosum (p < 0.05) of FAST versus SLOW rats. Using electron microscopy, alterations in myelinated axons including increased axon diameter (p < 0.001) and reduced g-ratio (p < 0.001) in the midline of the corpus callosum in 6 month old FAST (n = 3) versus SLOW (n = 4) male rats. These findings suggest that differences in white matter integrity between FAST and SLOW rats could be a contributing factor to the differential seizure susceptibility and behavioral phenotypes observed in these strains.

AB - Alterations in white matter integrity have been well documented in chronic epilepsy and during epileptogenesis. However, the relationship between white matter integrity and a predisposition towards epileptogenesis has been understudied. The FAST rat strain exhibit heightened susceptibility towards kindling epileptogenesis whereas SLOW rats are highly resistant. FAST rats also display behavioral phenotypes reminiscent of those observed in neurodevelopmental disorders that commonly comorbid with epilepsy. In this study, we aim to identify differences in white matter integrity that may contribute to a predisposition towards epileptogenesis and its associated comorbidities in 6 month old FAST (n = 10) and SLOW (n = 10) male rats. Open field and water consumption tests were conducted to confirm the behavioral phenotype difference between FAST and SLOW rats followed by ex-vivo diffusion-weighted magnetic resonance imaging to identify differences in white matter integrity. Diffusion tensor imaging scalar values namely fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity were compared in the anterior commissure, corpus callosum, external capsule, internal capsule, fimbria and optic tract. Electron microscopy was used to evaluate microstructural alterations in myelinated axons. Behavioral phenotyping confirmed higher activity levels (distance moved on days 2–4, p < 0.001; number of rearings on days 2 and 4, p < 0.05 at both days) and polydipsia (p < 0.001) in FAST rats. Comparative analysis of diffusion tensor imaging scalars found a significant decrease in fractional anisotropy in the corpus callosum (p < 0.05) of FAST versus SLOW rats. Using electron microscopy, alterations in myelinated axons including increased axon diameter (p < 0.001) and reduced g-ratio (p < 0.001) in the midline of the corpus callosum in 6 month old FAST (n = 3) versus SLOW (n = 4) male rats. These findings suggest that differences in white matter integrity between FAST and SLOW rats could be a contributing factor to the differential seizure susceptibility and behavioral phenotypes observed in these strains.

KW - Diffusion tensor imaging

KW - Epilepsy

KW - Neurodevelopmental disorders

KW - Seizure susceptibility

KW - White matter

UR - http://www.scopus.com/inward/record.url?scp=85018450374&partnerID=8YFLogxK

U2 - 10.1016/j.nbd.2017.04.022

DO - 10.1016/j.nbd.2017.04.022

M3 - Article

VL - 104

SP - 33

EP - 40

JO - Neurobiology of Disease

JF - Neurobiology of Disease

SN - 0969-9961

ER -