TY - JOUR
T1 - Development of a resolution metric for comprehensive two-dimensional chromatography
AU - Peters, Sonja
AU - Vivo-Truyols, Gabriel
AU - Marriott, Philip
AU - Shoenmakers, Peter
PY - 2007
Y1 - 2007
N2 - A new resolution metric for two-dimensional chromatography is proposed and tested. This resolution measurement is based on the concept of the (one-dimensional) valley-to-peak ratio, which has been adapted and modified for two-dimensional chromatography. Two questions are considered related to the computation of the resolution of a given (two-dimensional) peak. First, the concept of peak neighbourhood is revised, since it changes drastically from one- to two-dimensional chromatography. In a chromatogram resulting from a two-dimensional analysis, one peak may be surrounded by more than two neighbouring peaks. However, the neighbouring peaks can be remote from the peak or some interfering peaks may be in between. In these cases, it is not meaningful to compute the resolution between them. A method is proposed to determine whether a resolution measurement between two two-dimensional peaks is reasonable. Second, a measurement of the valley-to-peak ratio in two-dimensional chromatography is proposed. The measurement is based on the concept of the saddle point (which is defined for two-dimensional surface plots). A study of the correlation of the valley-to-peak ratio with the error obtained for quantification is presented. The new metfic can be used as an estimator of the quantification errors. Also, valley-to-peak ratios can be calculated for one or more target peak(s) to estimate the separation quality of the entire chromatogram. This makes the proposed measurement suitable for optimisation purposes. Although the algorithm was developed for GC x GC, preliminary studies suggested that its application to other two-dimensional separation methods (e.g. LC x LC) should only require minor modification (if any).
AB - A new resolution metric for two-dimensional chromatography is proposed and tested. This resolution measurement is based on the concept of the (one-dimensional) valley-to-peak ratio, which has been adapted and modified for two-dimensional chromatography. Two questions are considered related to the computation of the resolution of a given (two-dimensional) peak. First, the concept of peak neighbourhood is revised, since it changes drastically from one- to two-dimensional chromatography. In a chromatogram resulting from a two-dimensional analysis, one peak may be surrounded by more than two neighbouring peaks. However, the neighbouring peaks can be remote from the peak or some interfering peaks may be in between. In these cases, it is not meaningful to compute the resolution between them. A method is proposed to determine whether a resolution measurement between two two-dimensional peaks is reasonable. Second, a measurement of the valley-to-peak ratio in two-dimensional chromatography is proposed. The measurement is based on the concept of the saddle point (which is defined for two-dimensional surface plots). A study of the correlation of the valley-to-peak ratio with the error obtained for quantification is presented. The new metfic can be used as an estimator of the quantification errors. Also, valley-to-peak ratios can be calculated for one or more target peak(s) to estimate the separation quality of the entire chromatogram. This makes the proposed measurement suitable for optimisation purposes. Although the algorithm was developed for GC x GC, preliminary studies suggested that its application to other two-dimensional separation methods (e.g. LC x LC) should only require minor modification (if any).
UR - http://www.sciencedirect.com.ezproxy.lib.monash.edu.au/science/article/pii/S0021967307002142
U2 - 10.1016/j.chroma.2007.01.109
DO - 10.1016/j.chroma.2007.01.109
M3 - Article
SN - 0021-9673
VL - 1146
SP - 232
EP - 241
JO - Journal of Chromatography A
JF - Journal of Chromatography A
IS - 2
ER -