Development of a multiphysics model to characterize the responsive behavior of urea-sensitive hydrogel as biosensor

K. B. Goh, Hua Li, K. Y. Lam

Research output: Contribution to journalArticleResearchpeer-review

29 Citations (Scopus)

Abstract

A remarkable feature of biomaterials is their ability to deform in response to certain external bio-stimuli. Here, a novel biochemo-electro-mechanical model is developed for the numerical characterization of the urea-sensitive hydrogel in response to the external stimulus of urea. The urea sensitivity of the hydrogel is usually characterized by the states of ionization and denaturation of the immobilized urease, as such the model includes the effect of the fixed charge groups and temperature coupled with pH on the activity of the urease. Therefore, a novel rate of reaction equation is proposed to characterize the hydrolysis of urea that accounts for both the ionization and denaturation states of the urease subject to the environmental conditions. After examination with the published experimental data, it is thus confirmed that the model can characterize well the responsive behavior of the urea-sensitive hydrogel subject to the urea stimulus, including the distribution patterns of the electrical potential and pH of the hydrogel. The results point to an innovative means for generating electrical power via the enzyme-induced pH and electrical potential gradients, when the hydrogel comes in contact with the urea-rich solution, such as human urine.

Original languageEnglish
Pages (from-to)673-679
Number of pages7
JournalBiosensors and Bioelectronics
Volume91
DOIs
Publication statusPublished - 15 May 2017
Externally publishedYes

Keywords

  • Bioelectrochemistry
  • Multiphysics model
  • Urea-sensitive hydrogel
  • Urease

Cite this