TY - JOUR
T1 - Development of a Home-Based Light Therapy for Fatigue Following Traumatic Brain Injury
T2 - Two Case Studies
AU - Connolly, Laura J.
AU - Ponsford, Jennie L.
AU - Rajaratnam, Shantha M.W.
AU - Lockley, Steven W.
N1 - Funding Information:
This work was supported by funding from The Summer Foundation, Monash University, and Epworth HealthCare. The lighting used in the study was purchased from commercial retailers. The choice of lamps used was based on availability, the appropriate spectrum, cost and compatibility with existing fixtures.
Funding Information:
Conflict of Interest: SR is the Program Leader for the CRC for Alertness, Safety and Productivity, Australia; Director (now Chair) of the Sleep Health Foundation. He has received grants from Vanda Pharmaceuticals, Philips Respironics, Cephalon, Rio Tinto, BHP Billiton and Shell which are not related to this paper. He has received equipment support and consultancy fees through his institution from Optalert, Compumedics, Teva Pharmaceuticals, and Circadian Therapeutics, which are not related to this paper. SL has had a number of commercial interests in the last 3 years (2018–20). His interests were reviewed and managed by Brigham and Women’s Hospital and Partners HealthCare in accordance with their conflict of interest policies. No interests are directly related to the research or topic reported in this paper but, in the interests of full disclosure, are outlined below. SL has received consulting fees from the BHP Billiton, EyeJust Inc., Noble Insights, Rec Room, Six Senses, Stantec and Team C Racing; and has current consulting contracts with Akili Interactive; Apex 2100 Ltd.; Consumer Sleep Solutions; Headwaters Inc.; Hintsa Performance AG; KBR Wyle Service, Light Cognitive; Lighting Science Group Corporation/HealthE; Look Optic; Mental Workout/Timeshifter and View Inc. He has received honoraria and travel or accommodation expenses from Emory University, Estée Lauder, Ineos, MIT, Roxbury Latin School, and University of Toronto, and travel or accommodation expenses (no honoraria) from IES, Mental Workout, Solemma, and Wiley; and royalties from Oxford University Press. He holds equity in iSleep pty. He has received an unrestricted equipment gift from F. Lux Software LLC, a fellowship gift from Stockgrand Ltd. and holds an investigator-initiated grant from F. Lux Software LLC and a Clinical Research Support Agreement with Vanda Pharmaceuticals Inc. He is an unpaid Board Member of the Midwest Lighting Institute (non-profit). He was a Program Leader for the CRC for Alertness, Safety and Productivity, Australia, through an adjunct professor position at Monash University (2015–2019). He has served as a paid expert in legal proceedings related to light, sleep and health.
Funding Information:
We thank the Monash Epworth Rehabilitation Research Centre for assistance with participant recruitment and Rob Kilpatrick (Registered Electrical Contractor #22573) for completing the study electrical work. We thank Michael Herf from f.lux Software LLC for providing software to assist with light data processing.
Publisher Copyright:
© Copyright © 2021 Connolly, Ponsford, Rajaratnam and Lockley.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/9/13
Y1 - 2021/9/13
N2 - Background and Objectives: Fatigue and sleep disturbance negatively impact quality of life following brain injury and there are no established treatments. Building on research showing efficacy of blue light therapy delivered via a lightbox in reducing fatigue and daytime sleepiness after traumatic brain injury (TBI), this paper describes the development and implementation of a novel in-home light therapy to alleviate fatigue and sleep disturbance in two case studies. Methods: During the 8-week lighting intervention, participants' home lighting was adjusted to provide high intensity, blue-enriched (high melanopic) light all day as a stimulant and dimmer, blue-depleted (low melanopic) light for 3 h before sleep as a soporific. The sham 8-week control condition resembled participants' usual (baseline) lighting conditions (3,000–4,000 K all day). Lighting conditions were crossed-over. Outcomes were measures of fatigue, subjective daytime sleepiness, sleep quality, insomnia symptoms, psychomotor vigilance and mood. Case study participants were a 35-year old male (5 years post-TBI), and a 46-year-old female (22 years post-TBI). Results: The relative proportion of melanopic lux was greater in Treatment lighting than Control during daytime, and lower during evenings. Participants found treatment to be feasible to implement, and was well-tolerated with no serious side effects noted. Self-reported compliance was >70%. Both cases demonstrated reduced fatigue, sleep disturbance and insomnia symptoms during the treatment lighting intervention. Case 2 additionally showed reductions in daytime sleepiness and depressive symptoms. As expected, symptoms trended toward baseline levels during the control condition. Discussion: Treatment was positively received and compliance rates were high, with no problematic side-effects. Participants expressed interest in continuing the ambient light therapy in their daily lives. Conclusions: These cases studies demonstrate the acceptability and feasibility of implementing a personalized in-home dynamic light treatment for TBI patients, with evidence for efficacy in reducing fatigue and sleep disturbance. Clinical Trial Registration: www.anzctr.org.au, identifier: ACTRN12617000866303.
AB - Background and Objectives: Fatigue and sleep disturbance negatively impact quality of life following brain injury and there are no established treatments. Building on research showing efficacy of blue light therapy delivered via a lightbox in reducing fatigue and daytime sleepiness after traumatic brain injury (TBI), this paper describes the development and implementation of a novel in-home light therapy to alleviate fatigue and sleep disturbance in two case studies. Methods: During the 8-week lighting intervention, participants' home lighting was adjusted to provide high intensity, blue-enriched (high melanopic) light all day as a stimulant and dimmer, blue-depleted (low melanopic) light for 3 h before sleep as a soporific. The sham 8-week control condition resembled participants' usual (baseline) lighting conditions (3,000–4,000 K all day). Lighting conditions were crossed-over. Outcomes were measures of fatigue, subjective daytime sleepiness, sleep quality, insomnia symptoms, psychomotor vigilance and mood. Case study participants were a 35-year old male (5 years post-TBI), and a 46-year-old female (22 years post-TBI). Results: The relative proportion of melanopic lux was greater in Treatment lighting than Control during daytime, and lower during evenings. Participants found treatment to be feasible to implement, and was well-tolerated with no serious side effects noted. Self-reported compliance was >70%. Both cases demonstrated reduced fatigue, sleep disturbance and insomnia symptoms during the treatment lighting intervention. Case 2 additionally showed reductions in daytime sleepiness and depressive symptoms. As expected, symptoms trended toward baseline levels during the control condition. Discussion: Treatment was positively received and compliance rates were high, with no problematic side-effects. Participants expressed interest in continuing the ambient light therapy in their daily lives. Conclusions: These cases studies demonstrate the acceptability and feasibility of implementing a personalized in-home dynamic light treatment for TBI patients, with evidence for efficacy in reducing fatigue and sleep disturbance. Clinical Trial Registration: www.anzctr.org.au, identifier: ACTRN12617000866303.
KW - blue light
KW - fatigue
KW - light therapy
KW - melanopsin
KW - sleep disturbance
KW - sleepiness
KW - stroke
KW - traumatic brain injury
UR - http://www.scopus.com/inward/record.url?scp=85115886238&partnerID=8YFLogxK
U2 - 10.3389/fneur.2021.651498
DO - 10.3389/fneur.2021.651498
M3 - Article
C2 - 34589041
AN - SCOPUS:85115886238
SN - 1664-2295
VL - 12
JO - Frontiers in Neurology
JF - Frontiers in Neurology
M1 - 651498
ER -