Abstract
The rivastigmine (RHT) loaded chitosan nanoparticles (CS-RHT NPs) were prepared by ionic gelation method to improve the bioavailability and enhance the uptake of RHT to the brain via intranasal (i.n.) delivery. CS-RHT NPs were characterized for particles size, particle size distribution (PDI), encapsulation efficiency, zeta potential and in vitro release study. Nose-to-brain delivery of placebo nanoparticles (CS-NPs) was investigated by confocal laser scanning microscopy technique using rhodamine-123 as a marker. The brain/blood ratio of RHT for different formulations were 0.235, 0.790 and 1.712 of RHT (i.v.), RHT (i.n.), and CS-RHT NPs (i.n.) respectively at 30 min are indicative of direct nose to brain transport bypassing the BBB. The brain concentration achieved from i.n. administration of CS-NPs (966 ± 20.66 ng ml-1; tmax 60 min) was significantly higher than those achieved after i.v. administration of RHT sol (387 ± 29.51 ng ml -1; tmax 30 min), and i.n. administration of RHT solution (508.66 ± 22.50 ng ml-1; tmax 60 min). The higher drug transport efficiency (355 ± 13.52%) and direct transport percentage (71.80 ± 6.71%) were found with CS-RHT NPs as compared to other formulation. These results suggest that CS-RHT NPs have better brain targeting efficiency and are a promising approach for i.n. delivery of RHT for the treatment and prevention of Alzheimer's disease (AD).
Original language | English |
---|---|
Pages (from-to) | 6-15 |
Number of pages | 10 |
Journal | European Journal of Pharmaceutical Sciences |
Volume | 47 |
Issue number | 1 |
DOIs | |
Publication status | Published - 30 Aug 2012 |
Externally published | Yes |
Keywords
- Biodistribution
- Brain targeting
- Confocal microscopy
- Intranasal route
- Nanoparticles
- Rivastigmine