Abstract
The β2-adrenergic receptor (β2AR) is a prototypical G pro-tein- coupled receptor that mediates many hormonal responses, including cardiovascular and pulmonary function. β-Agonists used to combat hypercontractility in airway smooth muscle stimulate β2AR-dependent cAMP production that ultimately promotes airway relaxation. Chronic stimulation of the β2AR by long acting β-agonists used in the treatment of asthma can promote attenuated responsiveness to agonists and an increased frequency of fatal asthmatic attacks. β2AR desensitization to β-agonists is primarily mediated by G protein-coupled receptor kinases and β-arrestins that attenuate receptor-Gs coupling and promote β2AR internalization and degradation. A biased agonist that can selectively stimulate Gs signaling without promoting receptor interaction with G protein-coupled receptor kinases and β-arrestins should serve as an advantageous asthma therapeutic. To identify such molecules, we screened ∼50 lipidated peptides derived from the intracellular loops of the β2AR, known as pepducins. This screen revealed two classes of Gs- biased pepducins, receptor-independent and receptor-dependent, as well as several β-arrestin-biased pepducins. The recep-tor- independent Gs-biased pepducins operate by directly stimulating G protein activation. In contrast, receptor-dependentG s-biased pepducins appear to stabilize aGs-biased conformation of the β2AR that couples to Gs but does not undergo G protein-coupled receptor kinase-mediated phosphorylation or β-arrestin-mediated internalization. Functional studies in primary human airway smooth muscle cells demonstrate that Gs- biased pepducins are not subject to conventional desensitization and thus may be good candidates for the development of next generation asthma therapeutics. Our study reports the first Gs-biased activator of the β2AR and provides valuable tools for the study of β2AR function.
Original language | English |
---|---|
Pages (from-to) | 35668-35684 |
Number of pages | 17 |
Journal | Journal of Biological Chemistry |
Volume | 289 |
Issue number | 52 |
DOIs | |
Publication status | Published - 26 Dec 2014 |
Externally published | Yes |
Keywords
- andrenergic receptor
- asthma
- drug discovery
- G protein-coupled receptor (GPCR)
- peptides
- signal transduction
- B2-Adrenergic receptor
- pepducin
- biased agonist
- functional selectivity