Detrimental actions of obesity-associated advanced glycation end-products on endometrial epithelial cell proliferation are alleviated by antioxidants

Jennifer C. Hutchison, Jemma Evans, Tracey A. Edgell, Guiying Nie, David K. Gardner, Lois A. Salamonsen

Research output: Contribution to journalArticleResearchpeer-review

3 Citations (Scopus)

Abstract

Research question: Advanced glycation end-products (AGE) are elevated in the uterine environment of obese infertile women. Can the detrimental effects of AGE on endometrial epithelial cells be mitigated with therapeutics, and recapitulated in a more physiologically relevant primary model (organoids)? Design: Human endometrial epithelial cells (ECC-1) were exposed to AGE at concentrations physiologically representative of uterine fluid in lean or obese individuals, and three potential therapeutics: 25 nmol/l receptor for AGE (RAGE) antagonist FPS-ZM1, 100 μmol/l metformin, or a combination of antioxidants (10 μmol/l N-acetyl-L-cysteine, 10 μmol/l N-acetyl-L-carnitine and 5 μmol/l α-lipoic acid). Real-time cell analysis (xCELLigence, ACEA Biosciences) determined the rate of adhesion and proliferation. The proliferation of organoid-derived cells and secretion of cytokines from organoids was characterized in the presence of AGE (n = 5). The uterine fluid of women undergoing assisted reproduction was profiled for AGE-associated inflammatory markers (n = 77). Results: ECC-1 proliferation was reduced by AGE from obese versus lean conditions and vehicle control (P = 0.04 and P < 0.001, respectively), and restored to a proliferation corresponding to lean conditions by antioxidants. AGE influenced organoid derived primary endometrial epithelial cell proliferation in a donor-dependent manner. AGE increased the organoid secretion of the proinflammatory cytokine CXCL16 (P = 0.006). Clinically, CXCL16 correlated positively to maternal body mass index (R = 0.264, P = 0.021) and intrauterine glucose concentration (R = 0.736, P < 0.0001). Conclusions: Physiologically relevant concentrations of AGE alter endometrial epithelial cell function. Antioxidants restore the rate of proliferation of AGE-treated endometrial epithelial (ECC-1) cells. Primary endometrial epithelial cells, cultured as organoids, demonstrate altered proliferation and CXCL16 secretion in the presence of AGE equimolar with the uterine fluid from obese individuals.

Original languageEnglish
Pages (from-to)35-50
Number of pages16
JournalReproductive BioMedicine Online
Volume47
Issue number1
DOIs
Publication statusPublished - Jul 2023

Keywords

  • Advanced glycation end-products
  • Endometrium
  • Epithelium
  • Inflammation
  • Obesity
  • Organoids

Cite this