Determining in-plane carrier diffusion in two-dimensional perovskite using local time-resolved photoluminescence

Chunhua Zhou, Weijian Chen, Shuang Yang, Qingdong Ou, Zhixing Gan, Qiaoliang Bao, Baohua Jia, Xiaoming Wen

Research output: Contribution to journalArticleResearchpeer-review

3 Citations (Scopus)


The diffusion length of photogenerated carriers is a crucial parameter in semiconductors for optoelectronic applications. However, it is a challenging task to determine the diffusion length in layered nanoplatelets due to their anisotropic diffusion of photogenerated carriers and nanometer-thin thickness. Here, we demonstrate a novel method to determine the in-plane diffusion length of photogenerated carriers in layered nanoplatelets using local time-resolved photoluminescence. Also, the in-plane carrier diffusion length of 1.82 μm is obtained for an exfoliated (BA)2PbI4 (BA = CH3(CH2)3NH3) perovskite nanoplatelet. This method is particularly useful for weak luminescent materials and the materials that are easily damaged by long-term laser beam because of the high detection sensitivity. This technique is extendable to other layered materials and therefore plays a valuable role in the development and optimization of two-dimensional (2D) and three-dimensional (3D) semiconductor materials and devices for photovoltaic and photonic applications.

Original languageEnglish
Pages (from-to)26384-26390
Number of pages7
JournalACS Applied Materials & Interfaces
Issue number23
Publication statusPublished - 10 Jun 2020


  • diffusion length
  • edge-trapping state
  • surface recombination velocity
  • time-resolved photoluminescence
  • two-dimensional (2D) Ruddlesden−Popper perovskites (RPPs) nanoplatelet

Cite this