Determination of total and non-water soluble iodine in atmospheric aerosols by thermal extraction and spectrometric detection (TESI)

Benjamin S Gilfedder, Rosie Chance, Urlich Dettmann, Senchao C Lai, Alex R Barker

Research output: Contribution to journalArticleResearchpeer-review

16 Citations (Scopus)

Abstract

Iodine has recently been of interest in atmospheric chemistry due to its role in tropospheric ozone depletion, modification of the HO/HO2 ratio and aerosol nucleation. Gas-phase iodine chemistry is tightly coupled to the aerosol phase through heterogeneous reactions, which are dependent on iodine concentrations and speciation in the aerosol. To date, the only method available for total iodine determination in aerosols is collection on filters by impaction and quantification by neutron activation analysis (NAA). NAA is not widely available to all working groups and is costly to commission. Here, we present a method to determine total iodine concentrations in aerosol impact filter samples by combustion of filter sub-samples (similar to 5 cm(2)) at 1,000 degrees C, trapping in deionised water and quantification by UV/Vis spectroscopy. Both quartz and cellulose filters were analysed from four separate sampling campaigns. The method proved to be sensitive (3 sigma=6 ng absolute iodine approximate to 3 pmolm(-3)) precise (RSD similar to 5 ) and accurate, as determined by external and standard addition calibrations.
Original languageEnglish
Pages (from-to)519 - 526
Number of pages8
JournalAnalytical and Bioanalytical Chemistry
Volume398
Issue number1
DOIs
Publication statusPublished - 2010
Externally publishedYes

Cite this