Detecting and correcting systematic variation in large-scale RNA sequencing data

Sheng Li, Pawel P. Labaj, Paul Zumbo, Peter Sykacek, Wei Shi, Leming Shi, John Phan, Po Yen Wu, May Wang, Charles Wang, Danielle Thierry-Mieg, Jean Thierry-Mieg, David P. Kreil, Christopher E. Mason

Research output: Contribution to journalArticleResearchpeer-review

134 Citations (Scopus)

Abstract

High-throughput RNA sequencing (RNA-seq) enables comprehensive scans of entire transcriptomes, but best practices for analyzing RNA-seq data have not been fully defined, particularly for data collected with multiple sequencing platforms or at multiple sites. Here we used standardized RNA samples with built-in controls to examine sources of error in large-scale RNA-seq studies and their impact on the detection of differentially expressed genes (DEGs). Analysis of variations in guanine-cytosine content, gene coverage, sequencing error rate and insert size allowed identification of decreased reproducibility across sites. Moreover, commonly used methods for normalization (cqn, EDASeq, RUV2, sva, PEER) varied in their ability to remove these systematic biases, depending on sample complexity and initial data quality. Normalization methods that combine data from genes across sites are strongly recommended to identify and remove site-specific effects and can substantially improve RNA-seq studies.

Original languageEnglish
Pages (from-to)888-895
Number of pages8
JournalNature Biotechnology
Volume32
Issue number9
DOIs
Publication statusPublished - Sept 2014
Externally publishedYes

Cite this