TY - JOUR
T1 - Design, synthesis, and evaluation of a new fluorescent probe for measuring polymyxin-lipopolysaccharide binding interactions
AU - Soon, Rachel
AU - Velkov, Tony
AU - Chiu, Francis
AU - Thompson, Philip
AU - Kancharla, Rashmi
AU - Roberts, Kade
AU - Larson, Ian
AU - Nation, Roger
AU - Li, Jian
PY - 2011
Y1 - 2011
N2 - Fluorescence assays employing semisynthetic or commercial dansyl-polymyxin B have been widely employed to assess the affinity of polycations, including polymyxins, for bacterial cells and lipopolysaccharide (LPS). The five primary I?-amines on diaminobutyric acid residues of polymyxin B are potentially derivatized with dansyl-chloride. Mass spectrometric analysis of the commercial product revealed a complex mixture of di- or tetra-dansyl-substituted polymyxin B. We synthesized a mono-substituted fluorescent derivative, dansyl[Lys]1polymyxin B3. The affinity of polymyxin for purified gram-negative LPS and whole bacterial cells was investigated. The affinity of dansyl[Lys]1polymyxin B3 for LPS was comparable to polymyxin B and colistin, and considerably greater (Kd <1 I?M) than for whole cells (Kd 6a??12 I?M). Isothermal titration calorimetric studies demonstrated exothermic enthalpically driven binding between both polymyxin B and dansyl[Lys]1polymyxin B3 to LPS, attributed to electrostatic interactions. The hydrophobic dansyl moiety imparted a greater entropic contribution to the dansyl[Lys]1polymyxin B3a??LPS reaction. Molecular modeling revealed a loss of electrostatic contact within the dansyl[Lys]1polymyxin B3a??LPS complex due to steric hindrance from the dansyl[Lys]1 fluorophore; this corresponded with diminished antibacterial activity (MIC 16 I?g/mL). Dansyl[Lys]1polymyxin B3 may prove useful as a screening tool for drug development.
AB - Fluorescence assays employing semisynthetic or commercial dansyl-polymyxin B have been widely employed to assess the affinity of polycations, including polymyxins, for bacterial cells and lipopolysaccharide (LPS). The five primary I?-amines on diaminobutyric acid residues of polymyxin B are potentially derivatized with dansyl-chloride. Mass spectrometric analysis of the commercial product revealed a complex mixture of di- or tetra-dansyl-substituted polymyxin B. We synthesized a mono-substituted fluorescent derivative, dansyl[Lys]1polymyxin B3. The affinity of polymyxin for purified gram-negative LPS and whole bacterial cells was investigated. The affinity of dansyl[Lys]1polymyxin B3 for LPS was comparable to polymyxin B and colistin, and considerably greater (Kd <1 I?M) than for whole cells (Kd 6a??12 I?M). Isothermal titration calorimetric studies demonstrated exothermic enthalpically driven binding between both polymyxin B and dansyl[Lys]1polymyxin B3 to LPS, attributed to electrostatic interactions. The hydrophobic dansyl moiety imparted a greater entropic contribution to the dansyl[Lys]1polymyxin B3a??LPS reaction. Molecular modeling revealed a loss of electrostatic contact within the dansyl[Lys]1polymyxin B3a??LPS complex due to steric hindrance from the dansyl[Lys]1 fluorophore; this corresponded with diminished antibacterial activity (MIC 16 I?g/mL). Dansyl[Lys]1polymyxin B3 may prove useful as a screening tool for drug development.
U2 - 10.1016/j.ab.2010.10.033
DO - 10.1016/j.ab.2010.10.033
M3 - Article
C2 - 21050838
VL - 409
SP - 273
EP - 283
JO - Analytical Biochemistry
JF - Analytical Biochemistry
SN - 0003-2697
IS - 2
ER -