Derivation and FACS-mediated purification of PAX3+/PAX7+ skeletal muscle precursors from human pluripotent stem cells

Bianca Elizabeth Borchin, Joseph Yuanfeng Chen, Tiziano Barberi

Research output: Contribution to journalArticleResearchpeer-review

137 Citations (Scopus)


Human pluripotent stem cells (hPSCs) constitute a promising resource for use in cell-based therapies and a valuable in vitro model for studying early human development and disease. Despite significant advancements in the derivation of specific fates from hPSCs, the generation of skeletal muscle remains challenging and is mostly dependent on transgene expression. Here, we describe a method based on the use of a small-molecule GSK3beta inhibitor to derive skeletal muscle from several hPSC lines. We show that early GSK3beta inhibition is sufficient to create the conditions necessary for highly effective derivation of muscle cells. Moreover, we developed a strategy for stringent fluorescence-activated cell sorting-based purification of emerging PAX3+/PAX7+ muscle precursors that are able to differentiate in postsort cultures into mature myocytes. This transgene-free, efficient protocol provides an essential tool for producing myogenic cells for in vivo preclinical studies, in vitro screenings, and disease modeling.
Original languageEnglish
Pages (from-to)620 - 631
Number of pages12
JournalStem Cell Reports
Issue number6
Publication statusPublished - 2013

Cite this