TY - JOUR
T1 - Delayed Hopf Bifurcation and Space-Time Buffer Curves in the Complex Ginzburg-Landau Equation
AU - Goh, Ryan
AU - Kaper, Tasso J.
AU - Vo, Theodore
N1 - Publisher Copyright:
© 2022 The Author(s) 2022. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
PY - 2022/4
Y1 - 2022/4
N2 - In this article, the recently discovered phenomenon of delayed Hopf bifurcations (DHB) in reaction-diffusion partial differential equations (PDEs) is analysed in the cubic Complex Ginzburg-Landau equation, as an equation in its own right, with a slowly varying parameter. We begin by using the classical asymptotic methods of stationary phase and steepest descents on the linearized PDE to show that solutions, which have approached the attracting quasi-steady state (QSS) before the Hopf bifurcation remain near that state for long times after the instantaneous Hopf bifurcation and the QSS has become repelling. In the complex time plane, the phase function of the linearized PDE has a saddle point, and the Stokes and anti-Stokes lines are central to the asymptotics. The non-linear terms are treated by applying an iterative method to the mild form of the PDE given by perturbations about the linear particular solution. This tracks the closeness of solutions near the attracting and repelling QSS in the full, non-linear PDE. Next, we show that beyond a key Stokes line through the saddle there is a curve in the space-time plane along which the particular solution of the linear PDE ceases to be exponentially small, causing the solution of the non-linear PDE to diverge from the repelling QSS and exhibit large-amplitude oscillations. This curve is called the space-time buffer curve. The homogeneous solution also stops being exponentially small in a spatially dependent manner, as determined also by the initial data and time. Hence, a competition arises between these two solutions, as to which one ceases to be exponentially small first, and this competition governs spatial dependence of the DHB. We find four different cases of DHB, depending on the outcomes of the competition, and we quantify to leading order how these depend on the main system parameters, including the Hopf frequency, initial time, initial data, source terms, and diffusivity. Examples are presented for each case, with source terms that are a uni-modal function, a smooth step function, a spatially periodic function and an algebraically growing function. Also, rich spatio-temporal dynamics are observed in the post-DHB oscillations. Finally, it is shown that large-amplitude source terms can be designed so that solutions spend substantially longer times near the repelling QSS, and hence, region-specific control over the delayed onset of oscillations can be achieved.
AB - In this article, the recently discovered phenomenon of delayed Hopf bifurcations (DHB) in reaction-diffusion partial differential equations (PDEs) is analysed in the cubic Complex Ginzburg-Landau equation, as an equation in its own right, with a slowly varying parameter. We begin by using the classical asymptotic methods of stationary phase and steepest descents on the linearized PDE to show that solutions, which have approached the attracting quasi-steady state (QSS) before the Hopf bifurcation remain near that state for long times after the instantaneous Hopf bifurcation and the QSS has become repelling. In the complex time plane, the phase function of the linearized PDE has a saddle point, and the Stokes and anti-Stokes lines are central to the asymptotics. The non-linear terms are treated by applying an iterative method to the mild form of the PDE given by perturbations about the linear particular solution. This tracks the closeness of solutions near the attracting and repelling QSS in the full, non-linear PDE. Next, we show that beyond a key Stokes line through the saddle there is a curve in the space-time plane along which the particular solution of the linear PDE ceases to be exponentially small, causing the solution of the non-linear PDE to diverge from the repelling QSS and exhibit large-amplitude oscillations. This curve is called the space-time buffer curve. The homogeneous solution also stops being exponentially small in a spatially dependent manner, as determined also by the initial data and time. Hence, a competition arises between these two solutions, as to which one ceases to be exponentially small first, and this competition governs spatial dependence of the DHB. We find four different cases of DHB, depending on the outcomes of the competition, and we quantify to leading order how these depend on the main system parameters, including the Hopf frequency, initial time, initial data, source terms, and diffusivity. Examples are presented for each case, with source terms that are a uni-modal function, a smooth step function, a spatially periodic function and an algebraically growing function. Also, rich spatio-temporal dynamics are observed in the post-DHB oscillations. Finally, it is shown that large-amplitude source terms can be designed so that solutions spend substantially longer times near the repelling QSS, and hence, region-specific control over the delayed onset of oscillations can be achieved.
KW - complex Ginzburg-Landau equation
KW - dynamic bifurcation in PDEs
KW - hard onset of oscillations
KW - reaction-diffusion equations
KW - slow passage through Hopf bifurcation
KW - spatially inhomogeneous onset of oscillations
KW - stationary phase method
KW - steepest descents method
UR - http://www.scopus.com/inward/record.url?scp=85129108214&partnerID=8YFLogxK
U2 - 10.1093/imamat/hxac001
DO - 10.1093/imamat/hxac001
M3 - Article
AN - SCOPUS:85129108214
SN - 0272-4960
VL - 87
SP - 131
EP - 186
JO - IMA Journal of Applied Mathematics
JF - IMA Journal of Applied Mathematics
IS - 2
ER -