Delay Aware Intelligent Transient Stability Assessment System

James J.Q. Yu, Albert Y.S. Lam, David J. Hill, Victor O.K. Li

Research output: Contribution to journalArticleResearchpeer-review

41 Citations (Scopus)


Transient stability assessment is a critical tool for power system design and operation. With the emerging advanced synchrophasor measurement techniques, machine learning methods are playing an increasingly important role in power system stability assessment. However, most existing research makes a strong assumption that the measurement data transmission delay is negligible. In this paper, we focus on investigating the influence of communication delay on synchrophasor-based transient stability assessment. In particular, we develop a delay aware intelligent system to address this issue. By utilizing an ensemble of multiple long short-term memory networks, the proposed system can make early assessments to achieve a much shorter response time by utilizing incomplete system variable measurements. Compared with existing work, our system is able to make accurate assessments with a significantly improved efficiency. We perform numerous case studies to demonstrate the superiority of the proposed intelligent system, in which accurate assessments can be developed with time one third less than state-of-the-art methodologies. Moreover, the simulations indicate that noise in the measurements has trivial impact on the assessment performance, demonstrating the robustness of the proposed system.

Original languageEnglish
Pages (from-to)17230-17239
Number of pages10
JournalIEEE Access
Publication statusPublished - 29 Aug 2017
Externally publishedYes


  • communication delay
  • intelligent system
  • long short-term memory
  • phasor measurement units
  • Transient stability assessment
  • voltage phasor

Cite this