Deformation Mechanisms in Orogenic Gold Systems During Aseismic Periods: Microstructural Evidence from the Central Victorian Gold Deposits, Southeast Australia

Nicholas J.R. Hunter, Christopher R. Voisey, Andrew G. Tomkins, Christopher J.L. Wilson, Vladimir Luzin, Natasha R. Stephen

Research output: Contribution to journalArticleResearchpeer-review

7 Citations (Scopus)

Abstract

In many orogenic gold deposits, gold is located in quartz veins. Understanding vein development at the microstructural scale may therefore provide insights into processes influencing the distribution of gold, its morphology, and its relationship to faulting. We present evidence that deformation processes during aseismic periods produce characteristic quartz microstructures and crystallographic preferred orientations, which are observed across multiple deposits and orogenic events. Quartz veins comprise a matrix of coarse, subidiomorphic, and columnar grains overprinted by finer-grained quartz seams subparallel to the fault trace, which suggests an initial stage of cataclastic deformation. The fine-grained quartz domains are characterized by well-oriented quartz c-axis clusters and girdles oriented parallel to the maximum extension direction, which reveals that fluid-enhanced pressure solution occurred subsequent to grain refinement. Coarser anhedral gold is associated with primary quartz, whereas fine-grained, “dusty” gold trails are found within the fine-grained quartz seams, revealing a link between aseismic deformation and gold morphology. These distinct quartz and gold morphologies, observed at both micro- and macroscale, suggest that both seismic fault-valving and aseismic deformation processes are both important controls on gold distribution.

Original languageEnglish
Pages (from-to)1849-1864
Number of pages16
JournalEconomic Geology
Volume116
Issue number8
DOIs
Publication statusPublished - Dec 2021

Cite this