Projects per year
Abstract
In many orogenic gold deposits, gold is located in quartz veins. Understanding vein development at the microstructural scale may therefore provide insights into processes influencing the distribution of gold, its morphology, and its relationship to faulting. We present evidence that deformation processes during aseismic periods produce characteristic quartz microstructures and crystallographic preferred orientations, which are observed across multiple deposits and orogenic events. Quartz veins comprise a matrix of coarse, subidiomorphic, and columnar grains overprinted by finer-grained quartz seams subparallel to the fault trace, which suggests an initial stage of cataclastic deformation. The fine-grained quartz domains are characterized by well-oriented quartz c-axis clusters and girdles oriented parallel to the maximum extension direction, which reveals that fluid-enhanced pressure solution occurred subsequent to grain refinement. Coarser anhedral gold is associated with primary quartz, whereas fine-grained, “dusty” gold trails are found within the fine-grained quartz seams, revealing a link between aseismic deformation and gold morphology. These distinct quartz and gold morphologies, observed at both micro- and macroscale, suggest that both seismic fault-valving and aseismic deformation processes are both important controls on gold distribution.
Original language | English |
---|---|
Pages (from-to) | 1849-1864 |
Number of pages | 16 |
Journal | Economic Geology |
Volume | 116 |
Issue number | 8 |
DOIs | |
Publication status | Published - Dec 2021 |
Projects
- 1 Finished
-
Advancing Mineral Exploration Models for Orogenic Gold Deposits
Tomkins, A., Cruden, S., Maas, R., Micklethwaite, S., Wilson, C., Cayley, R., Gibson, H. & Hitchman, S.
Australian Research Council (ARC), Monash University, University of Melbourne, University of Western Australia, Crocodile Gold Corporation, Geological Survey of Victoria, Intrepid Geophysics, Newmarket Gold Victorian Holdings Pty Ltd
17/03/16 → 31/12/19
Project: Research