DeepGenGrep: a general deep learning-based predictor for multiple genomic signals and regions

Quanzhong Liu, Honglin Fang, Xiao Wang, Miao Wang, Shuqin Li, Lachlan J.M. Coin, Fuyi Li, Jiangning Song

Research output: Contribution to journalArticleResearchpeer-review

9 Citations (Scopus)

Abstract

MOTIVATION: Accurate annotation of different genomic signals and regions (GSRs) from DNA sequences is fundamentally important for understanding gene structure, regulation and function. Numerous efforts have been made to develop machine learning-based predictors for in silico identification of GSRs. However, it remains a great challenge to identify GSRs as the performance of most existing approaches is unsatisfactory. As such, it is highly desirable to develop more accurate computational methods for GSRs prediction. RESULTS: In this study, we propose a general deep learning framework termed DeepGenGrep, a general predictor for the systematic identification of multiple different GSRs from genomic DNA sequences. DeepGenGrep leverages the power of hybrid neural networks comprising a three-layer convolutional neural network and a two-layer long short-term memory to effectively learn useful feature representations from sequences. Benchmarking experiments demonstrate that DeepGenGrep outperforms several state-of-the-art approaches on identifying polyadenylation signals, translation initiation sites and splice sites across four eukaryotic species including Homo sapiens, Mus musculus, Bos taurus and Drosophila melanogaster. Overall, DeepGenGrep represents a useful tool for the high-throughput and cost-effective identification of potential GSRs in eukaryotic genomes. AVAILABILITY AND IMPLEMENTATION: The webserver and source code are freely available at http://bigdata.biocie.cn/deepgengrep/home and Github (https://github.com/wx-cie/DeepGenGrep/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Original languageEnglish
Pages (from-to)4053-4061
Number of pages9
JournalBioinformatics
Volume38
Issue number17
DOIs
Publication statusPublished - 1 Sept 2022

Keywords

  • Bioinformatics
  • Genomic signals
  • Deep learning
  • Sequence analysis
  • Predictor
  • Machine learning

Cite this