TY - JOUR
T1 - Deep eutectic solvents for the self-assembly of gold nanoparticles
T2 - a SAXS, UV-Vis, and TEM investigation
AU - Raghuwanshi, Vikram Singh
AU - Ochmann, Miguel
AU - Hoell, Armin
AU - Polzer, Frank
AU - Rademann, Klaus
PY - 2014/6/3
Y1 - 2014/6/3
N2 - In this work, we report the formation and growth mechanisms of gold nanoparticles (AuNPs) in eco-friendly deep eutectic solvents (DES; choline chloride and urea). AuNPs are synthesized on the DES surface via a low-energy sputter deposition method. Detailed small angle X-ray scattering (SAXS), UV-Vis, and cryogenic transmission electron microscopy (cryo-TEM) investigations show the formation of AuNPs of 5 nm diameter. Data analysis reveals that for a prolonged gold-sputtering time there is no change in the size of the particles. Only the concentration of AuNPs increases linearly in time. More surprisingly, the self-assembly of AuNPs into a first and second shell ordered system is observed directly by in situ SAXS for prolonged gold-sputtering times. The self-assembly mechanism is explained by the templating nature of DES combined with the equilibrium between specific physical interaction forces between the AuNPs. A disulfide-based stabilizer, bis((2-mercaptoethyl)trimethylammonium) disulfide dichloride, was applied to suppress the self-assembly. Moreover, the stabilizer even reverses the self-assembled or agglomerated AuNPs back to stable 5 nm individual particles as directly evidenced by UV-Vis. The template behavior of DES is compared to that of nontemplating solvent castor oil. Our results will also pave the way to understand and control the self-assembly of metallic and bimetallic nanoparticles.
AB - In this work, we report the formation and growth mechanisms of gold nanoparticles (AuNPs) in eco-friendly deep eutectic solvents (DES; choline chloride and urea). AuNPs are synthesized on the DES surface via a low-energy sputter deposition method. Detailed small angle X-ray scattering (SAXS), UV-Vis, and cryogenic transmission electron microscopy (cryo-TEM) investigations show the formation of AuNPs of 5 nm diameter. Data analysis reveals that for a prolonged gold-sputtering time there is no change in the size of the particles. Only the concentration of AuNPs increases linearly in time. More surprisingly, the self-assembly of AuNPs into a first and second shell ordered system is observed directly by in situ SAXS for prolonged gold-sputtering times. The self-assembly mechanism is explained by the templating nature of DES combined with the equilibrium between specific physical interaction forces between the AuNPs. A disulfide-based stabilizer, bis((2-mercaptoethyl)trimethylammonium) disulfide dichloride, was applied to suppress the self-assembly. Moreover, the stabilizer even reverses the self-assembled or agglomerated AuNPs back to stable 5 nm individual particles as directly evidenced by UV-Vis. The template behavior of DES is compared to that of nontemplating solvent castor oil. Our results will also pave the way to understand and control the self-assembly of metallic and bimetallic nanoparticles.
UR - http://www.scopus.com/inward/record.url?scp=84901837081&partnerID=8YFLogxK
U2 - 10.1021/la500979p
DO - 10.1021/la500979p
M3 - Article
C2 - 24814886
AN - SCOPUS:84901837081
SN - 0743-7463
VL - 30
SP - 6038
EP - 6046
JO - Langmuir
JF - Langmuir
IS - 21
ER -