Abstract
Principal Component Analysis (PCA) and its exponential family extensions have three components: observations, latents and parameters of a linear transformation. We consider a generalised setting where the canonical parameters of the exponential family are a nonlinear transformation of the latents. We show explicit relationships between particular neural network architectures and the corresponding statistical models. We find that deep equilibrium models - a recently introduced class of implicit neural networks - solve maximum a-posteriori (MAP) estimates for the latents and parameters of the transformation. Our analysis provides a systematic way to relate activation functions, dropout, and layer structure, to statistical assumptions about the observations, thus providing foundational principles for unsupervised DEQs. For hierarchical latents, individual neurons can be interpreted as nodes in a deep graphical model. Our DEQ feature maps are end-to-end differentiable, enabling fine-tuning for downstream tasks.
Original language | English |
---|---|
Title of host publication | Proceedings of The 26th International Conference on Artificial Intelligence and Statistics |
Editors | Francisco Ruiz, Jennifer Dy, Jan-Willem van de Meent |
Place of Publication | London UK |
Publisher | Proceedings of Machine Learning Research (PMLR) |
Pages | 1646-1671 |
Number of pages | 26 |
Volume | 206 |
Publication status | Published - 2023 |
Externally published | Yes |
Event | International Conference on Artificial Intelligence and Statistics 2023 - Palau de Congressos, Valencia, Spain Duration: 25 Apr 2023 → 27 Apr 2023 Conference number: 26th https://proceedings.mlr.press/v206/ (Proceedings) http://aistats.org/aistats2023/ (Website) |
Conference
Conference | International Conference on Artificial Intelligence and Statistics 2023 |
---|---|
Abbreviated title | AISTATS 2023 |
Country/Territory | Spain |
City | Valencia |
Period | 25/04/23 → 27/04/23 |
Internet address |
|