Decoupling hydrogen production from water oxidation by integrating a triphase interfacial bioelectrochemical cascade reaction

Jun Zhang, Xia Sheng, Zhenyao Ding, Haili Wang, Lai Feng, Xiqi Zhang, Liping Wen, Lei Jiang, Xinjian Feng

Research output: Contribution to journalArticleResearchpeer-review

7 Citations (Scopus)


Water electrolysis to produce H2 is a promising strategy for generating a renewable fuel. However, the sluggish-kinetics and low value-added anodic oxygen evolution reaction (OER) restricts the overall energy conversion efficiency. Herein we report a strategy of boosting H2 production at low voltages by replacing OER with a bioelectrochemical cascade reaction at a triphase bioanode. In the presence of oxygen, oxidase enzymes can convert biomass into valuable products, and concurrently generate H2O2 that can be further electrooxidized at the bioanode. Benefiting from the efficient oxidase kinetics at an oxygen-rich triphase bioanode and the more favorable thermodynamics of H2O2 oxidation than that of OER, the cell voltage and energy consumption are reduced by ~0.70 V and ~36%, respectively, relative to regular water electrolysis. This leads to an efficient H2 production at the cathode and valuable product generation at the bioanode. Integration of a bioelectrochemical cascade into the water splitting process provides an energy-efficient and promising pathway for achieving a renewable fuel.

Original languageEnglish
Pages (from-to)164-169
Number of pages6
JournalScience Bulletin
Issue number2
Publication statusPublished - 30 Jan 2021
Externally publishedYes


  • Bioelectrochemical cascade reaction
  • Hydrogen production
  • Oxidase
  • Water electrolysis

Cite this