TY - JOUR
T1 - Data repairing and resolution enhancement using data-driven modal decomposition and deep learning
AU - Hetherington, Ashton
AU - Serfaty, Daniel
AU - Corrochano, Adrián
AU - Soria, Julio
AU - Le Clainche, Soledad
N1 - Funding Information:
The authors would like to express their gratitude to the research group ModelFLOWs for their valuable discussions, assistance in generating new databases, and for their support in testing some of the developed tools. The authors acknowledge the grant PID2020-114173RB-I00 funded by MCIN/AEI/10.13039/501100011033 and the support of Comunidad de Madrid, Spain through the call Research Grants for Young Investigators from Universidad Polit\u00E9cnica de Madrid. S.L.C. acknowledges the support provided by Grant No. TED2021-129774B-C21 and by Grant No. PLEC2022-009235, funded by MCIN/AEI/10.13039/501100011033 and by the European Union \u201CNextGenerationEU\u201D/ PRTR.
Funding Information:
The authors would like to express their gratitude to the research group ModelFLOWs for their valuable discussions, assistance in generating new databases, and for their support in testing some of the developed tools. The authors acknowledge the grant PID2020-114173RB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and the support of Comunidad de Madrid through the call Research Grants for Young Investigators from Universidad Polit\u00E9cnica de Madrid. S.L.C. acknowledges the support provided by Grant No. TED2021-129774B-C21 and by Grant No. PLEC2022-009235 , funded by MCIN/AEI/ 10.13039/501100011033 and by the European Union \u201CNextGenerationEU\u201D/ PRTR .
Publisher Copyright:
© 2024 The Author(s)
PY - 2024/8
Y1 - 2024/8
N2 - This paper introduces a new series of methods which combine modal decomposition algorithms, such as singular value decomposition and high-order singular value decomposition, and deep learning architectures to repair, enhance, and increase the quality and precision of numerical and experimental data. A combination of two- and three-dimensional, numerical and experimental datasets are used to demonstrate the reconstruction capacity of the presented methods, showing that these methods can be used to reconstruct any type of dataset, showing outstanding results when applied to highly complex data, which is noisy. The combination of benefits of these techniques results in a series of data-driven methods which are capable of repairing and/or enhancing the resolution of a dataset by identifying the underlying physics that define the data, which is incomplete or under-resolved, filtering any existing noise. These methods and the Python codes are included in the first release of ModelFLOWs-app.1
AB - This paper introduces a new series of methods which combine modal decomposition algorithms, such as singular value decomposition and high-order singular value decomposition, and deep learning architectures to repair, enhance, and increase the quality and precision of numerical and experimental data. A combination of two- and three-dimensional, numerical and experimental datasets are used to demonstrate the reconstruction capacity of the presented methods, showing that these methods can be used to reconstruct any type of dataset, showing outstanding results when applied to highly complex data, which is noisy. The combination of benefits of these techniques results in a series of data-driven methods which are capable of repairing and/or enhancing the resolution of a dataset by identifying the underlying physics that define the data, which is incomplete or under-resolved, filtering any existing noise. These methods and the Python codes are included in the first release of ModelFLOWs-app.1
KW - Data analysis
KW - Data repairing
KW - Data-driven methods
KW - Deep learning
KW - Fluid dynamics
KW - Reduced order model
KW - Resolution enhancement
KW - Singular value decomposition
UR - http://www.scopus.com/inward/record.url?scp=85194315211&partnerID=8YFLogxK
U2 - 10.1016/j.expthermflusci.2024.111241
DO - 10.1016/j.expthermflusci.2024.111241
M3 - Article
AN - SCOPUS:85194315211
SN - 0894-1777
VL - 157
JO - Experimental Thermal and Fluid Science
JF - Experimental Thermal and Fluid Science
M1 - 111241
ER -