CycleISP: real image restoration via improved data synthesis

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

130 Citations (Scopus)

Abstract

The availability of large-scale datasets has helped unleash the true potential of deep convolutional neural networks (CNNs). However, for the single-image denoising problem, capturing a real dataset is an unacceptably expensive and cumbersome procedure. Consequently, image denoising algorithms are mostly developed and evaluated on synthetic data that is usually generated with a widespread assumption of additive white Gaussian noise (AWGN). While the CNNs achieve impressive results on these synthetic datasets, they do not perform well when applied on real camera images, as reported in recent benchmark datasets. This is mainly because the AWGN is not adequate for modeling the real camera noise which is signal-dependent and heavily transformed by the camera imaging pipeline. In this paper, we present a framework that models camera imaging pipeline in forward and reverse directions. It allows us to produce any number of realistic image pairs for denoising both in RAW and sRGB spaces. By training a new image denoising network on realistic synthetic data, we achieve the state-of-the-art performance on real camera benchmark datasets. The parameters in our model are ∼5 times lesser than the previous best method for RAW denoising. Furthermore, we demonstrate that the proposed framework generalizes beyond image denoising problem e.g., for color matching in stereoscopic cinema. The source code and pre-trained models are available at https://github.com/swz30/CycleISP.

Original languageEnglish
Title of host publicationProceedings - 33th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2020
EditorsCe Liu, Greg Mori, Kate Saenko, Silvio Savarese
Place of PublicationPiscataway NJ USA
PublisherIEEE, Institute of Electrical and Electronics Engineers
Pages2693-2702
Number of pages10
ISBN (Electronic)9781728171685
ISBN (Print)9781728171692
DOIs
Publication statusPublished - 2020
Externally publishedYes
EventIEEE Conference on Computer Vision and Pattern Recognition 2020 - Virtual, China
Duration: 14 Jun 202019 Jun 2020
http://cvpr2020.thecvf.com (Website )
https://openaccess.thecvf.com/CVPR2020 (Proceedings)
https://ieeexplore.ieee.org/xpl/conhome/9142308/proceeding (Proceedings)

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
PublisherIEEE, Institute of Electrical and Electronics Engineers
ISSN (Print)1063-6919
ISSN (Electronic)2575-7075

Conference

ConferenceIEEE Conference on Computer Vision and Pattern Recognition 2020
Abbreviated titleCVPR 2020
Country/TerritoryChina
CityVirtual
Period14/06/2019/06/20
Internet address

Cite this