Curvature generation in curved spaces for few-shot learning

Zhi Gao, Yuwei Wu, Yunde Jia, Mehrtash Harandi

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

34 Citations (Scopus)

Abstract

Few-shot learning describes the challenging problem of recognizing samples from unseen classes given very few labeled examples. In many cases, few-shot learning is cast as learning an embedding space that assigns test samples to their corresponding class prototypes. Previous methods assume that data of all few-shot learning tasks comply with a fixed geometrical structure, mostly a Euclidean structure. Questioning this assumption that is clearly difficult to hold in real-world scenarios and incurs distortions to data, we propose to learn a task-aware curved embedding space by making use of the hyperbolic geometry. As a result, task-specific embedding spaces where suitable curvatures are generated to match the characteristics of data are constructed, leading to more generic embedding spaces. We then leverage on intra-class and inter-class context information in the embedding space to generate class prototypes for discriminative classification. We conduct a comprehensive set of experiments on inductive and transductive few-shot learning, demonstrating the benefits of our proposed method over existing embedding methods.

Original languageEnglish
Title of host publicationProceedings, 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
EditorsEric Mortensen
Place of PublicationPiscataway NJ USA
PublisherIEEE, Institute of Electrical and Electronics Engineers
Pages8671-8680
Number of pages10
ISBN (Electronic)9781665428125
ISBN (Print)9781665428132
DOIs
Publication statusPublished - 2021
EventIEEE International Conference on Computer Vision 2021 - Online, United States of America
Duration: 11 Oct 202117 Oct 2021
https://iccv2021.thecvf.com/home (Website)
https://ieeexplore.ieee.org/xpl/conhome/9709627/proceeding (Proceedings)

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
PublisherIEEE, Institute of Electrical and Electronics Engineers
ISSN (Print)1550-5499
ISSN (Electronic)2380-7504

Conference

ConferenceIEEE International Conference on Computer Vision 2021
Abbreviated titleICCV 2021
Country/TerritoryUnited States of America
CityOnline
Period11/10/2117/10/21
Internet address

Cite this