TY - JOUR
T1 - Crystallization of Sensitizers Controls Morphology and Performance in Si-/C-PCPDTBT-Sensitized P3HT
T2 - ICBA Ternary Blends
AU - Du, Xiaoyan
AU - Jiao, Xuechen
AU - Rechberger, Stefanie
AU - Perea, José Darío
AU - Meyer, Markus
AU - Kazerouni, Negar
AU - Spiecker, Erdmann
AU - Ade, Harald
AU - Brabec, Christoph J.
AU - Fink, Rainer H.
AU - Ameri, Tayebeh
PY - 2017/3/28
Y1 - 2017/3/28
N2 - Organic solar cells based on multinary components are promising to further boost the device performance. The complex interplay of the morphology and functionality needs further investigations. Here, we report on a systematic study on the morphology evolution of prototype ternary systems upon adding sensitizers featuring similar chemical structures but dramatically different crystallinity, namely poly(3-hexylthiophene) (P3HT) and indene-C60-bis-adduct (ICBA) blends with poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadi-azole)-5,5′-diyl] (Si-PCPDTBT) and poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (C-PCPDTBT), employing energy-filtered transmission electron microscopy (EFTEM) and resonant soft X-ray scattering (RSoXS). In addition, a combined density functional theory (DFT) and artificial neuronal network (ANN) computational approach has been utilized to calculate the solubility parameters and Flory-Huggins intermolecular parameters to evaluate the influence of miscibility on the final morphology. Our experiments reveal that the domain spacing and purity of ICBA-rich domains are retained in Si-PCPDTBT-based systems but are strongly reduced in C-PCPDTBT-based ternary systems. The P3HT fiber structure are retained at low sensitizer content but dramatically reduced at high sensitizer content. The theoretical calculations reveal very similar miscibility/compatibility between the two sensitizers and ICBA as well as P3HT. Thus, we conclude that mainly the crystallization of Si-PCPDTBT drives the nanostructure evolution in the ternary systems, while this driving force is absent in C-PCPDTBT-based ternary blends.
AB - Organic solar cells based on multinary components are promising to further boost the device performance. The complex interplay of the morphology and functionality needs further investigations. Here, we report on a systematic study on the morphology evolution of prototype ternary systems upon adding sensitizers featuring similar chemical structures but dramatically different crystallinity, namely poly(3-hexylthiophene) (P3HT) and indene-C60-bis-adduct (ICBA) blends with poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadi-azole)-5,5′-diyl] (Si-PCPDTBT) and poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (C-PCPDTBT), employing energy-filtered transmission electron microscopy (EFTEM) and resonant soft X-ray scattering (RSoXS). In addition, a combined density functional theory (DFT) and artificial neuronal network (ANN) computational approach has been utilized to calculate the solubility parameters and Flory-Huggins intermolecular parameters to evaluate the influence of miscibility on the final morphology. Our experiments reveal that the domain spacing and purity of ICBA-rich domains are retained in Si-PCPDTBT-based systems but are strongly reduced in C-PCPDTBT-based ternary systems. The P3HT fiber structure are retained at low sensitizer content but dramatically reduced at high sensitizer content. The theoretical calculations reveal very similar miscibility/compatibility between the two sensitizers and ICBA as well as P3HT. Thus, we conclude that mainly the crystallization of Si-PCPDTBT drives the nanostructure evolution in the ternary systems, while this driving force is absent in C-PCPDTBT-based ternary blends.
UR - http://www.scopus.com/inward/record.url?scp=85016392517&partnerID=8YFLogxK
U2 - 10.1021/acs.macromol.6b02699
DO - 10.1021/acs.macromol.6b02699
M3 - Article
AN - SCOPUS:85016392517
SN - 0024-9297
VL - 50
SP - 2415
EP - 2423
JO - Macromolecules
JF - Macromolecules
IS - 6
ER -