Abstract
Current eye tracking technologies have a number of drawbacks when it comes to practical use in real-world settings. Common challenges, such as high levels of daylight, eyewear (e.g. spectacles or contact lenses) and eye make-up, give rise to noise that undermines their utility as a standard component for mobile computing, design, and evaluation. To work around these challenges, we introduce CrowdEyes, a mobile eye tracking solution that utilizes crowdsourcing for increased tracking accuracy and robustness. We present a pupil detection task design for crowd workers together with a study that demonstrates the high-level accuracy of crowdsourced pupil detection in comparison to state-of-the-art pupil detection algorithms. We further demonstrate the utility of our crowdsourced analysis pipeline in a fixation tagging task. In this paper, we validate the accuracy and robustness of harnessing the crowd as both an alternative and complement to automated pupil detection algorithms, and explore the associated costs and quality of our crowdsourcing approach.
Original language | English |
---|---|
Title of host publication | MobileHCI '17 - Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services |
Editors | Roderick Murray-Smith, Yvonne Rogers |
Place of Publication | New York NY USA |
Publisher | Association for Computing Machinery (ACM) |
Number of pages | 13 |
ISBN (Electronic) | 9781450350754 |
DOIs | |
Publication status | Published - 2017 |
Externally published | Yes |
Event | International Conference on Human-Computer Interaction with Mobile Devices and Services 2017 - Vienna, Austria Duration: 4 Sept 2017 → 7 Sept 2017 Conference number: 19th https://dl.acm.org/doi/proceedings/10.1145/3098279 (Proceedings) |
Conference
Conference | International Conference on Human-Computer Interaction with Mobile Devices and Services 2017 |
---|---|
Abbreviated title | MobileHCI 2017 |
Country/Territory | Austria |
City | Vienna |
Period | 4/09/17 → 7/09/17 |
Internet address |
|
Keywords
- Crowd quality control
- Crowdsourcing
- Eye tracking
- Mobile computing
- Pupil detection
- Wearable computing