Projects per year
Abstract
We study systematically the role of temperature in the optical response of doped two-dimensional semiconductors. By making use of a finite-temperature Fermi-polaron theory, we reveal a crossover from a quantum-degenerate regime with well-defined polaron quasiparticles to an incoherent regime at high temperature or low doping where the lowest-energy "attractive" polaron quasiparticle is destroyed, becoming subsumed into a broad trion-hole continuum. We demonstrate that the crossover is accompanied by significant qualitative changes in both absorption and photoluminescence. In particular, with increasing temperature (or decreasing doping), the emission profile of the attractive branch evolves from a symmetric Lorentzian to an asymmetric peak with an exponential tail involving trions and recoil electrons at finite momentum. We discuss the effect of temperature on the coupling to light for structures embedded into a microcavity, and we show that there can exist well-defined polariton quasiparticles even when the exciton-polaron quasiparticle has been destroyed, where the transition from weak to strong light-matter coupling can be explained in terms of the polaron linewidths and spectral weights.
Original language | English |
---|---|
Article number | 125406 |
Number of pages | 18 |
Journal | Physical Review B |
Volume | 108 |
Issue number | 12 |
DOIs | |
Publication status | Published - 15 Sept 2023 |
-
ARC Centre of Excellence in Future Low-energy Electronics Technologies
Fuhrer, M. (Primary Chief Investigator (PCI)), Bao, Q. (Chief Investigator (CI)), Culcer, D. (Chief Investigator (CI)), Davis, M. (Chief Investigator (CI)), Davis, J. A. (Chief Investigator (CI)), Hamilton, A. (Chief Investigator (CI)), Helmerson, K. (Chief Investigator (CI)), Klochan, O. (Chief Investigator (CI)), Medhekar, N. (Chief Investigator (CI)), Ostrovskaya, E. A. (Chief Investigator (CI)), Parish, M. (Chief Investigator (CI)), Schiffrin, A. (Chief Investigator (CI)), Seidel, J. (Chief Investigator (CI)), Sushkov, O. (Chief Investigator (CI)), Valanoor, N. (Chief Investigator (CI)), Wang, X. (Chief Investigator (CI)), Galitskiy, V. (Partner Investigator (PI)), Gurarie, V. (Partner Investigator (PI)), Hannon, J. (Partner Investigator (PI)), Höfling, S. (Partner Investigator (PI)), Hone, J. (Partner Investigator (PI)), Rule, K. C. (Partner Investigator (PI)), Krausz, F. (Partner Investigator (PI)), Littlewood, P. (Partner Investigator (PI)), MacDonald, A. (Partner Investigator (PI)), Neto, A. (Partner Investigator (PI)), Oezyilmaz, B. (Partner Investigator (PI)), Paglione, J. (Partner Investigator (PI)), Phillips, W. (Partner Investigator (PI)), Spielman, I. (Partner Investigator (PI)), Tadich, A. (Partner Investigator (PI)), Xue, Q. (Partner Investigator (PI)), Cole, J. (Chief Investigator (CI)), Perali, A. (Partner Investigator (PI)), Neilson, D. (Partner Investigator (PI)), Sek, G. (Partner Investigator (PI)), Gaston, N. (Partner Investigator (PI)), Hodgkiss, J. M. (Partner Investigator (PI)), Tang, M. (Partner Investigator (PI)), Karel, J. (Chief Investigator (CI)), Nguyen, T.-L. (Project Manager), Adam, S. (Partner Investigator (PI)), Granville, S. (Partner Investigator (PI)), Kumar, P. (Chief Investigator (CI)) & Daeneke, T. (Chief Investigator (CI))
Australian Research Council (ARC), Monash University – Internal School Contribution, Monash University – Internal Department Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal University Contribution, University of Wollongong, University of Queensland , Tsinghua University, University of New South Wales (UNSW), Australian National University (ANU), RMIT University, Swinburne University of Technology
29/06/17 → 28/06/24
Project: Research
-
Few-body correlations in many-particle quantum matter
Levinsen, J. (Primary Chief Investigator (PCI))
Australian Research Council (ARC), Monash University
1/01/17 → 17/10/23
Project: Research