Abstract
This N = 173,426 social science dataset was collected through the collaborative COVIDiSTRESS Global Survey – an open science effort to improve understanding of the human experiences of the 2020 COVID-19 pandemic between 30th March and 30th May, 2020. The dataset allows a cross-cultural study of psychological and behavioural responses to the Coronavirus pandemic and associated government measures like cancellation of public functions and stay at home orders implemented in many countries. The dataset contains demographic background variables as well as measures of Asian Disease Problem, perceived stress (PSS-10), availability of social provisions (SPS-10), trust in various authorities, trust in governmental measures to contain the virus (OECD trust), personality traits (BFF-15), information behaviours, agreement with the level of government intervention, and compliance with preventive measures, along with a rich pool of exploratory variables and written experiences. A global consortium from 39 countries and regions worked together to build and translate a survey with variables of shared interests, and recruited participants in 47 languages and dialects. Raw plus cleaned data and dynamic visualizations are available.
Original language | English |
---|---|
Article number | 3 |
Number of pages | 23 |
Journal | Scientific Data |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - 4 Jan 2021 |
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Scientific Data, Vol. 8, No. 1, 3, 04.01.2021.
Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak
AU - Yamada, Yuki
AU - Ćepulić, Dominik Borna
AU - Coll-Martín, Tao
AU - Debove, Stéphane
AU - Gautreau, Guillaume
AU - Han, Hyemin
AU - Rasmussen, Jesper
AU - Tran, Thao P.
AU - Travaglino, Giovanni A.
AU - Blackburn, Angélique M.
AU - Boullu, Loïs
AU - Bujić, Mila
AU - Byrne, Grace
AU - Caniëls, Marjolein C.J.
AU - Flis, Ivan
AU - Kowal, Marta
AU - Rachev, Nikolay R.
AU - Reynoso-Alcántara, Vicenta
AU - Zerhouni, Oulmann
AU - Ahmed, Oli
AU - Amin, Rizwana
AU - Aquino, Sibele
AU - Areias, João Carlos
AU - Aruta, John Jamir Benzon R.
AU - Bamwesigye, Dastan
AU - Bavolar, Jozef
AU - Bender, Andrew R.
AU - Bhandari, Pratik
AU - Bircan, Tuba
AU - Cakal, Huseyin
AU - Capelos, Tereza
AU - Čeněk, Jiří
AU - Ch’ng, Brendan
AU - Chen, Fang Yu
AU - Chrona, Stavroula
AU - Contreras-Ibáñez, Carlos C.
AU - Correa, Pablo Sebastián
AU - Cristofori, Irene
AU - Cyrus-Lai, Wilson
AU - Delgado-Garcia, Guillermo
AU - Deschrijver, Eliane
AU - Díaz, Carlos
AU - Dilekler, İlknur
AU - Dranseika, Vilius
AU - Dubrov, Dmitrii
AU - Eichel, Kristina
AU - Ermagan-Caglar, Eda
AU - Gelpí, Rebekah
AU - González, Rubén Flores
AU - Griffin, Amanda
AU - Hakim, Moh Abdul
AU - Hanusz, Krzysztof
AU - Ho, Yuen Wan
AU - Hristova, Dayana
AU - Hubena, Barbora
AU - Ihaya, Keiko
AU - Ikizer, Gozde
AU - Islam, Md Nurul
AU - Jeftic, Alma
AU - Jha, Shruti
AU - Juárez, Fernanda Pérez Gay
AU - Kacmar, Pavol
AU - Kalinova, Kalina
AU - Kavanagh, Phillip S.
AU - Kosa, Mehmet
AU - Koszałkowska, Karolina
AU - Kumaga, Raisa
AU - Lacko, David
AU - Lee, Yookyung
AU - Lentoor, Antonio G.
AU - De Leon, Gabriel A.
AU - Lin, Shiang Yi
AU - Lins, Samuel
AU - López, Claudio Rafael Castro
AU - Lys, Agnieszka E.
AU - Mahlungulu, Samkelisiwe
AU - Makaveeva, Tsvetelina
AU - Mamede, Salomé
AU - Mari, Silvia
AU - Marot, Tiago A.
AU - Martinez, Liz
AU - Meshi, Dar
AU - Mola, Débora Jeanette
AU - Morales-Izquierdo, Sara
AU - Musliu, Arian
AU - Naidu, Priyanka A.
AU - Najmussaqib, Arooj
AU - Natividade, Jean C.
AU - Nebel, Steve
AU - Nezkusilova, Jana
AU - Nikolova, Irina
AU - Ninaus, Manuel
AU - Noreika, Valdas
AU - Ortiz, María Victoria
AU - Ozery, Daphna Hausman
AU - Pankowski, Daniel
AU - Pennato, Tiziana
AU - Pírko, Martin
AU - Pummerer, Lotte
AU - Reyna, Cecilia
AU - Romano, Eugenia
AU - Sahin, Hafize
AU - Sanli, Aybegum Memisoglu
AU - Sayılan, Gülden
AU - Scarpaci, Alessia
AU - Sechi, Cristina
AU - Shani, Maor
AU - Shata, Aya
AU - Sikka, Pilleriin
AU - Sinha, Nidhi
AU - Stöckli, Sabrina
AU - Studzinska, Anna
AU - Sungailaite, Emilija
AU - Szebeni, Zea
AU - Tag, Benjamin
AU - Taranu, Mihaela
AU - Tisocco, Franco
AU - Tuominen, Jarno
AU - Turk, Fidan
AU - Uddin, Muhammad Kamal
AU - Uzelac, Ena
AU - Vestergren, Sara
AU - Vilar, Roosevelt
AU - Wang, Austin Horng En
AU - West, J. Noël
AU - Wu, Charles K.S.
AU - Yaneva, Teodora
AU - Yeh, Yao Yuan
AU - Lieberoth, Andreas
AU - COVIDiSTRESS Global Survey Consortium
N1 - Funding Information: The COVIDiSTRESS consortium would like to acknowledge the additional contributions of numerous friends and collaborators in translating and sharing the COVIDiSTRESS survey, even if contributions were small or the person did not wish their name included as a member of the consortium. All funding information is listed in the supplementary material (Figure S1). We also want to address thanks to the IFB (Institut Français de Bioinformatique, https://www.france-bioinformatique.fr/) for hosting the server Shiny illustrating our results. This research was supported by JSPS KAKENHI Grants JP17H00875, JP18K12015, JP20H04581, JP20K14222, Czech Science Foundation GC19-09265J, Consejo Nacional de Ciencia y Tecnologia (Conacyt), Full National Scholarship - MSc degree (CVU: 613905), Research Foundation Flanders (FWO) postdoctoral fellowship, and The HSE University Basic Research Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Publisher Copyright: © 2021, The Author(s).
PY - 2021/1/4
Y1 - 2021/1/4
N2 - This N = 173,426 social science dataset was collected through the collaborative COVIDiSTRESS Global Survey – an open science effort to improve understanding of the human experiences of the 2020 COVID-19 pandemic between 30th March and 30th May, 2020. The dataset allows a cross-cultural study of psychological and behavioural responses to the Coronavirus pandemic and associated government measures like cancellation of public functions and stay at home orders implemented in many countries. The dataset contains demographic background variables as well as measures of Asian Disease Problem, perceived stress (PSS-10), availability of social provisions (SPS-10), trust in various authorities, trust in governmental measures to contain the virus (OECD trust), personality traits (BFF-15), information behaviours, agreement with the level of government intervention, and compliance with preventive measures, along with a rich pool of exploratory variables and written experiences. A global consortium from 39 countries and regions worked together to build and translate a survey with variables of shared interests, and recruited participants in 47 languages and dialects. Raw plus cleaned data and dynamic visualizations are available.
AB - This N = 173,426 social science dataset was collected through the collaborative COVIDiSTRESS Global Survey – an open science effort to improve understanding of the human experiences of the 2020 COVID-19 pandemic between 30th March and 30th May, 2020. The dataset allows a cross-cultural study of psychological and behavioural responses to the Coronavirus pandemic and associated government measures like cancellation of public functions and stay at home orders implemented in many countries. The dataset contains demographic background variables as well as measures of Asian Disease Problem, perceived stress (PSS-10), availability of social provisions (SPS-10), trust in various authorities, trust in governmental measures to contain the virus (OECD trust), personality traits (BFF-15), information behaviours, agreement with the level of government intervention, and compliance with preventive measures, along with a rich pool of exploratory variables and written experiences. A global consortium from 39 countries and regions worked together to build and translate a survey with variables of shared interests, and recruited participants in 47 languages and dialects. Raw plus cleaned data and dynamic visualizations are available.
UR - http://www.scopus.com/inward/record.url?scp=85098661855&partnerID=8YFLogxK
U2 - 10.1038/s41597-020-00784-9
DO - 10.1038/s41597-020-00784-9
M3 - Article
C2 - 33398078
AN - SCOPUS:85098661855
SN - 2052-4463
VL - 8
JO - Scientific Data
JF - Scientific Data
IS - 1
M1 - 3
ER -