Corticosterone administration alters white matter tract structure and reduces gliosis in the sub-acute phase of experimental stroke

Katarzyna Zalewska, Rebecca J. Hood, Giovanni Pietrogrande, Sonia Sanchez-Bezanilla, Lin Kooi Ong, Sarah J. Johnson, Kaylene M. Young, Michael Nilsson, Frederick R. Walker

Research output: Contribution to journalArticleResearchpeer-review

5 Citations (Scopus)


White matter tract (WMT) degeneration has been reported to occur following a stroke, and it is associated with post-stroke functional disturbances. White matter pathology has been suggested to be an independent predictor of post-stroke recovery. However, the factors that influence WMT remodeling are poorly understood. Cortisol is a steroid hormone released in response to prolonged stress, and elevated levels of cortisol have been reported to interfere with brain recovery. The objective of this study was to investigate the influence of corticosterone (CORT; the rodent equivalent of cortisol) on WMT structure post-stroke. Photothrombotic stroke (or sham surgery) was induced in 8-week-old male C57BL/6 mice. At 72 h, mice were exposed to standard drinking water ± CORT (100 µg/mL). After two weeks of CORT administration, mice were euthanised and brain tissue collected for histological and biochemical analysis of WMT (particularly the corpus cal-losum and corticospinal tract). CORT administration was associated with increased tissue loss within the ipsilateral hemisphere, and modest and inconsistent WMT reorganization. Further, a structural and molecular analysis of the WMT components suggested that CORT exerted effects over axons and glial cells. Our findings highlight that CORT at stress-like levels can moderately influence the reorganization and microstructure of WMT post-stroke.

Original languageEnglish
Article number6693
Number of pages15
JournalInternational Journal of Molecular Sciences
Issue number13
Publication statusPublished - 22 Jun 2021


  • Corticosterone
  • Glia
  • Myelin
  • Oligodendrocyte
  • Stress
  • Stroke recovery
  • White matter tracts

Cite this