Projects per year
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) with a kagome lattice can exhibit strong electron-electron interactions, which can lead to tunable quantum phases including many exotic magnetic phases. While technological developments of 2D MOFs typically take advantage of substrates for growth, support, and electrical contacts, investigations often ignore substrates and their dramatic influence on electronic properties. Here, we show how substrates alter the correlated magnetic phases in kagome MOFs using systematic density functional theory and mean-field Hubbard calculations. We demonstrate that MOF-substrate coupling, MOF-substrate charge transfer, strain, and external electric fields are key variables, activating and deactivating magnetic phases in these materials. While we consider the example of kagome-arranged 9,10-dicyanoanthracene molecules coordinated with copper atoms, our findings should generalise to any 2D kagome material. This work offers useful predictions for tunable interaction-induced magnetism in surface-supported 2D (metal-)organic materials, opening the door to solid-state electronic and spintronic technologies based on such systems.
Original language | English |
---|---|
Article number | 227 |
Number of pages | 10 |
Journal | npj Computational Materials |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2022 |
Projects
- 2 Finished
-
ARC Centre of Excellence in Future Low-energy Electronics Technologies
Fuhrer, M., Bao, Q., Culcer, D., Davis, M., Davis, J. A., Hamilton, A., Helmerson, K., Klochan, O., Medhekar, N., Ostrovskaya, E. A., Parish, M., Schiffrin, A., Seidel, J., Sushkov, O., Valanoor, N., Wang, X., Galitskiy, V., Gurarie, V., Hannon, J., Höfling, S., Hone, J., Rule, K. C., Krausz, F., Littlewood, P., MacDonald, A., Neto, A., Oezyilmaz, B., Paglione, J., Phillips, W., Spielman, I., Tadich, A., Xue, Q., Cole, J., Perali, A., Neilson, D., Sek, G., Gaston, N., Hodgkiss, J. M., Tang, M., Karel, J., Nguyen, T., Adam, S., Granville, S., Kumar, P. & Daeneke, T.
Australian Research Council (ARC), Monash University – Internal School Contribution, Monash University – Internal Department Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal University Contribution, University of Wollongong, University of Queensland , Tsinghua University, University of New South Wales (UNSW), Australian National University (ANU), RMIT University, Swinburne University of Technology
29/06/17 → 28/06/24
Project: Research
-
On-surface atomic-scale engineering of topological organic nanostructures
Australian Research Council (ARC)
1/06/16 → 20/12/22
Project: Research