Projects per year
Abstract
Sensory perception depends on neuronal populations creating an accurate representation of the external world. The amount of information that a population can represent depends on the tuning of individual neurons and the trial-by-trial variability shared among neurons. Although on average, pairwise spike-count correlations between neurons are positive, the distribution is wide, and the relationship between correlations and encoding is not straightforward. Here, we examine how single-neuron and population-level factors impact the efficacy of the neural code. We recorded responses to moving visual stimuli from motion-sensitive neurons in the middle temporal area of anesthetized marmosets (Callithrix jacchus) and trained decoders to assess how correlated and uncorrelated populations encoded stimulus motion direction. We found that the most responsive, direction-selective, and least variable neurons are the most relied-upon neurons in an uncorrelated population. In correlated populations, the same neurons do the most to shape the shared variability across the population in a way that facilitates decoding, and decoding is improved by the presence of temporally stable correlations. This suggests that the least variable neurons with the strongest stimulus representations enhance the population code by providing a strong signal and shaping correlations in variability orthogonally to the locus defined by the mean response.
Original language | English |
---|---|
Pages (from-to) | 615-626 |
Number of pages | 12 |
Journal | Cerebral Cortex |
Volume | 29 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Feb 2019 |
Keywords
- decoding
- marmoset
- motion
- MT
- spike-count correlations
Projects
- 3 Finished
-
ARC Centre of Excellence for Integrative Brain Function
Egan, G., Rosa, M., Lowery, A., Stuart, G., Arabzadeh, E., Skafidas, E., Ibbotson, M., Petrou, S., Paxinos, G., Mattingley, J., Garrido, M., Sah, P. K., Robinson, P. A., Martin, P., Grunert, U., Tanaka, K., Mitra, P., Johnson, G., Diamond, M., Margrie, T., Leopold, D., Movshon, J., Markram, H., Victor, J., Hill, S. & Jirsa, V. K.
Australian National University (ANU), Eidgenössische Technische Hochschule Zürich (ETH Zürich) (Federal Institute of Technology Zurich), Australian Research Council (ARC), Karolinska Institutet (Karolinska Institute), Council of the Queensland Institute of Medical Research (trading as QIMR Berghofer Medical Research Institute), Ecole Polytechnique Federale de Lausanne (EPFL) (Swiss Federal Institute of Technology in Lausanne) , Monash University, University of Melbourne, University of New South Wales (UNSW), University of Queensland , University of Sydney, Monash University – Internal University Contribution, NIH - National Institutes of Health (United States of America), Cornell University, New York University, Francis Crick Institute, Scuola Internazionale Superiore di Studi Avanzati (International School for Advanced Studies), Duke University, Cold Spring Harbor Laboratory, RIKEN
25/06/14 → 31/12/21
Project: Research
-
Context is everything - understanding how spatial, temporal and behavioural context affect sensory processing
Price, N., Arabzadeh, E. & Rajan, R.
National Health and Medical Research Council (NHMRC) (Australia)
1/01/14 → 31/12/16
Project: Research
-
Neuronal activity and variability underlying perception and action
National Health and Medical Research Council (NHMRC) (Australia)
1/01/11 → 31/12/14
Project: Research