Projects per year
Abstract
Most cumulus parametrizations today make use of a simple conceptual model of convection, called the mass-flux approach. This approach depicts convection as an ensemble of updrafts and downdrafts occurring within a model grid-box. The aim of this study is to determine convective mass-fluxes and their constituents on the scale of a 100 km GCM grid-box from a C-band polarimetric radar and thereafter investigate the relative role of area fraction and vertical velocity in determining the shape and magnitude of bulk mass-flux profiles. We make use of observational estimates of these quantities spanning 13 wet seasons in the tropical region of Darwin. Following a bulk approach, the results show that the distribution of mass-flux is positively skewed and its mean profile peaks at 4 km. This is the result of constant area fractions and increasing vertical velocities below that level. Above 4 km, in-cloud vertical velocity plays a marginal role compared to the convective area fraction in controlling mass-flux profiles.
Original language | English |
---|---|
Article number | e2021JD034910 |
Number of pages | 17 |
Journal | Journal of Geophysical Research: Atmospheres |
Volume | 126 |
Issue number | 19 |
DOIs | |
Publication status | Published - 16 Oct 2021 |
Projects
- 1 Finished
-
ARC Centre of Excellence for Climate Extremes
Pitman, A. J., Jakob, C., Alexander, L., Reeder, M., Roderick, M., England, M. H., Abramowitz, G., Abram, N., Arblaster, J., Bindoff, N. L., Dommenget, D., Evans, J. P., Hogg, A. M., Holbrook, N. J., Karoly, D. J., Lane, T. P., Sherwood, S. C., Strutton, P., Ebert, E., Hendon, H., Hirst, A. C., Marsland, S., Matear, R., Protat, A., Wang, Y., Wheeler, M. C., Best, M. J., Brody, S., Grabowski, W., Griffies, S., Gruber, N., Gupta, H., Hallberg, R., Hohenegger, C., Knutti, R., Meehl, G. A., Milton, S., de Noblet-Ducoudre, N., Or, D., Petch, J., Peters-Lidard, C., Overpeck, J., Russell, J., Santanello, J., Seneviratne, S. I., Stephens, G., Stevens, B., Stott, P. A. & Saunders, K.
Monash University – Internal University Contribution, Monash University – Internal School Contribution, Monash University – Internal Faculty Contribution, University of New South Wales (UNSW), Australian National University (ANU), University of Melbourne, University of Tasmania, Bureau of Meteorology (BOM) (Australia), Department of Climate change, Energy, the Environment and Water (DCCEEW) (New South Wales)
1/01/17 → 31/12/24
Project: Research