Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant

Meirong Song, Jie Ju, Siqi Luo, Yuchun Han, Zhichao Dong, Yilin Wang, Zhen Gu, Lingjuan Zhang, Ruiran Hao, Lei Jiang

Research output: Contribution to journalArticleResearchpeer-review

88 Citations (Scopus)

Abstract

Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface.

Original languageEnglish
Article numbere1602188
Number of pages7
JournalScience Advances
Volume3
Issue number3
DOIs
Publication statusPublished - 1 Mar 2017
Externally publishedYes

Cite this