Controlling dispersity in aqueous atom transfer radical polymerization: rapid and quantitative synthesis of one-pot block copolymers

Hyun Suk Wang, Kostas Parkatzidis, Simon Harrisson, Nghia P. Truong, Athina Anastasaki

Research output: Contribution to journalArticleResearchpeer-review

19 Citations (Scopus)


The dispersity (Đ) of a polymer is a key parameter in material design, and variations inĐcan have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to controlĐoperate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailorĐof both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 <Đ< 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesizein situdiblock copolymers with absolute control over the dispersity of either block (e.g.lowĐ→ highĐ, highĐ→ highĐ, highĐ→ lowĐ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to controlĐwithout affecting theMn, the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air.

Original languageEnglish
Pages (from-to)14376-14382
Number of pages7
JournalChemical Science
Issue number43
Publication statusPublished - 21 Nov 2021
Externally publishedYes

Cite this