Projects per year
Abstract
Organo-lead halide perovskites (OHPs) have recently emerged as a new class of exceptional optoelectronic materials, which may find use in many applications, including solar cells, light emitting diodes, and photodetectors. More complex applications, such as lasers and electro-optic modulators, require the use of monocrystalline perovskite materials to reach their ultimate performance levels. Conventional methods for forming single crystals of OHPs like methylammonium lead bromide (MAPbBr3) afford limited control over the product morphology, rendering the assembly of defined microcavity nanostructures difficult. We overcame this by synthesizing for the first time (MA)[PbBr3]DMF (1), and demonstrating its facile transformation into monocrystalline MAPbBr3 microplatelets. The MAPbBr3 microplatelets were tailored into waveguide based photonic devices, of which an ultra-low propagation loss of 0.04dBμm-1 for a propagation distance of 100μm was demonstrated. An efficient active electro-optical modulator (AEOM) consisting of a MAPbBr3 non-linear arc waveguide was demonstrated, exhibiting a 98.4% PL intensity modulation with an external voltage of 45V. This novel synthetic approach, as well as the demonstration of effective waveguiding, will pave the way for developing a wide range of photonic devices based on organo-lead halide perovskites.
Original language | English |
---|---|
Pages (from-to) | 12486-12491 |
Number of pages | 6 |
Journal | Angewandte Chemie - International Edition |
Volume | 56 |
Issue number | 41 |
DOIs | |
Publication status | Published - 2 Oct 2017 |
Keywords
- Electro-optical modulator
- Monocrystallinity
- Perovskite
- Polycrystallinity
- Waveguide
Projects
- 2 Finished
-
ARC Centre of Excellence in Exciton Science
Mulvaney, P., Ghiggino, K. P., Smith, T. A., Sader, J. E., Wong, W. W. H., Russo, S. P., Cole, J., Jasieniak, J., Funston, A., Bach, U., Cheng, Y., Lakhwani, G., Widmer-Cooper, A., McCamey, D., Schmidt, T., Gomez, D. E., Scholes, F., McCallum, R., Dicinoski, G., Du, C., Plenio, M. B., Tiang, J., Neaton, J., Lippitz, M. & Hao, X.
Monash University – Internal School Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal Department Contribution, Monash University – Internal University Contribution
30/06/17 → 30/06/24
Project: Research
-
ARC Centre of Excellence in Future Low-energy Electronics Technologies
Fuhrer, M., Bao, Q., Culcer, D., Davis, M., Davis, J. A., Hamilton, A., Helmerson, K., Klochan, O., Medhekar, N., Ostrovskaya, E. A., Parish, M., Schiffrin, A., Seidel, J., Sushkov, O., Valanoor, N., Wang, X., Galitskiy, V., Gurarie, V., Hannon, J., Höfling, S., Hone, J., Rule, K. C., Krausz, F., Littlewood, P., MacDonald, A., Neto, A., Oezyilmaz, B., Paglione, J., Phillips, W., Spielman, I., Tadich, A., Xue, Q., Cole, J., Perali, A., Neilson, D., Sek, G., Gaston, N., Hodgkiss, J. M., Tang, M., Karel, J., Nguyen, T., Adam, S., Granville, S., Kumar, P. & Daeneke, T.
Australian Research Council (ARC), Monash University – Internal School Contribution, Monash University – Internal Department Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal University Contribution, University of Wollongong, University of Queensland , Tsinghua University, University of New South Wales (UNSW), Australian National University (ANU), RMIT University, Swinburne University of Technology
29/06/17 → 28/06/24
Project: Research