TY - JOUR
T1 - Connections of the marmoset rostrotemporal auditory area: Express pathways for analysis of affective content in hearing
AU - Reser, David Henry
AU - Burman, Kathleen Janis
AU - Richardson, Karyn
AU - Spitzer, Matthew Wesley
AU - Rosa, Marcello Goncalves P
PY - 2009
Y1 - 2009
N2 - The current hierarchical model of primate auditory cortical processing proposes a core of primary-like areas, which is surrounded by secondary (belt) and tertiary (parabelt) regions. The rostrotemporal auditory cortical area (RT) remains the least well characterized of the three proposed core areas, and its functional organization has only recently come under scrutiny. Here we used injections of anterograde and retrograde tracers in the common marmoset (Callithrix jacchus) to examine the connectivity of RT and its adjacent areas. As expected from the current model, RT exhibited dense core-like reciprocal connectivity with the ventral division of the medial geniculate body, the rostral core area and the auditory belt, but had weaker connections with the parabelt. However, RT also projected to the ipsilateral rostromedial prefrontal cortex (area 10), the dorsal temporal pole and the ventral caudate nucleus, as well as bilaterally to the lateral nucleus of the amygdala. Thus, RT has connectivity with limbic structures previously believed to connect only with higher-order auditory association cortices, and is probably functionally distinct from the other core areas. While this view is consistent with a proposed role of RT in temporal integration, our results also indicate that RT could provide an anatomical shortcut for processing affective content in auditory information.
AB - The current hierarchical model of primate auditory cortical processing proposes a core of primary-like areas, which is surrounded by secondary (belt) and tertiary (parabelt) regions. The rostrotemporal auditory cortical area (RT) remains the least well characterized of the three proposed core areas, and its functional organization has only recently come under scrutiny. Here we used injections of anterograde and retrograde tracers in the common marmoset (Callithrix jacchus) to examine the connectivity of RT and its adjacent areas. As expected from the current model, RT exhibited dense core-like reciprocal connectivity with the ventral division of the medial geniculate body, the rostral core area and the auditory belt, but had weaker connections with the parabelt. However, RT also projected to the ipsilateral rostromedial prefrontal cortex (area 10), the dorsal temporal pole and the ventral caudate nucleus, as well as bilaterally to the lateral nucleus of the amygdala. Thus, RT has connectivity with limbic structures previously believed to connect only with higher-order auditory association cortices, and is probably functionally distinct from the other core areas. While this view is consistent with a proposed role of RT in temporal integration, our results also indicate that RT could provide an anatomical shortcut for processing affective content in auditory information.
UR - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19663937
M3 - Article
VL - 30
SP - 578
EP - 592
JO - European Journal of Neuroscience
JF - European Journal of Neuroscience
SN - 0953-816X
IS - 4
ER -