Conductivity corrections for topological insulators with spin-orbit impurities: Hikami-Larkin-Nagaoka formula revisited

P. Adroguer, Weizhe E. Liu, D. Culcer, E. M. Hankiewicz

Research output: Contribution to journalArticleResearchpeer-review

27 Citations (Scopus)


The Hikami-Larkin-Nagaoka (HLN) formula [S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980)PTPKAV0033-068X10.1143/PTP.63.707] describes the quantum corrections to the magnetoconductivity of a quasi-2D electron gas (quasi-2DEG) with parabolic dispersion. It predicts a crossover from weak localization to antilocalization as a function of the strength of scattering off spin-orbit impurities. Here, we derive the conductivity correction for massless Dirac fermions in 3D topological insulators (TIs) in the presence of spin-orbit impurities. We show that this correction is always positive and therefore we predict weak antilocalization for every value of the spin-orbit disorder. Furthermore, the correction to the diffusion constant is surprisingly linear in the strength of the impurity spin-orbit. Our results call for a reinterpretation of experimental fits for the magnetoconductivity of 3D TIs, which have so far used the standard HLN formula.

Original languageEnglish
Article number241402
Number of pages5
JournalPhysical Review B
Issue number24
Publication statusPublished - 4 Dec 2015
Externally publishedYes

Cite this